美文网首页java面试
最全技术面试180题:阿里11面试+网易+百度+美团!

最全技术面试180题:阿里11面试+网易+百度+美团!

作者: 高级java架构师 | 来源:发表于2018-11-06 16:22 被阅读18次

    如果你想学好JAVA这门技术,也想在IT行业拿高薪,可以参加我们的训练营课程,选择最适合自己的课程学习,技术大牛亲授,8个月后,进入名企拿高薪。我们的课程内容有:Java工程化、高性能及分布式、高性能、深入浅出。高架构。性能调优、Spring,MyBatis,Netty源码分析和大数据等多个知识点。如果你想拿高薪的,想学习的,想就业前景好的,想跟别人竞争能取得优势的,想进阿里面试但担心面试不过的,你都可以来,q群号为:180705916 进群免费领取学习资料。

    网络编程

    ISO模型与协议

    http1.0:需要使用keep-alive参数来告知服务器端要建立一个长连接

    http1.1:默认长连接。支持只发送header信息,可以用作权限请求。支持Host域。

    http2.0:多路复用的技术,做到同一个连接并发处理多个请求。HTTP2.0使用HPACK算法对header的数据进行压缩。支持HTTP2.0的web server请求数据的时候,服务器会顺便把一些客户端需要的资源一起推送到客户端,免得客户端再次创建连接发送请求到服务器端获取。这种方式非常合适加载静态资源。

    会话层:负责管理主机之间的会话进程,负责建立、管理、终止进程之间的会话。

    传输层:将上层数据分段并提供端到端的、可靠的或不可靠的传输,还要处理端到端的差错控制和流量控制问题。协议TCP、UDP、SPX

    网络层:对子网间的数据包进行路由选择。此外,网络层还可以实现拥塞控制、网际互连等功能。协议IP、IPX、RIP、OSPF

    数据链路层:在不可靠的物理介质上提供可靠的传输。该层的作用包括:物理地址寻址、数据的成帧、流量控制、数据的检错、重发等。协议SDLC、HDLC、PPP、STP、帧中继

    欢迎工作一到五年的Java工程师朋友们加入Java架构开发:860113481

    群内提供免费的Java架构学习资料(里面有高可用、高并发、高性能及分布式、Jvm性能调优、Spring源码,MyBatis,Netty,Redis,Kafka,Mysql,Zookeeper,Tomcat,Docker,Dubbo,Nginx等多个知识点的架构资料)合理利用自己每一分每一秒的时间来学习提升自己,不要再用"没有时间“来掩饰自己思想上的懒惰!趁年轻,使劲拼,给未来的自己一个交代!

    TCPIP模型与协议

    应用层:单位是数据段,协议有FTP、TELNET、HTTP、SMTP、SNMP、TFTP、NTP、DNS

    运输层:单位是数据包,协议有TCP、UDP

    网络层:单位是数据帧,协议有IP

    网络接口层:单位是比特,ARP、RARP

    三次握手与四次挥手

    BIO NIO AIO

    BIO:同步阻塞IO,每个请求都要一个线程来处理。

    NIO:同步非阻塞IO,一个线程可以处理多个请求,适用于短连接、小数据。

    AIO:异步非阻塞IO,一个线程处理多个请求,使用回调函数实现,适用于长连接、大数据。

    DDOS攻击原理与防御方式

    HTTP Get Flood:发送大量会产生sql查询的连接,使得数据库负载很高。

    CSRF跨站请求伪造原理攻击者盗用了你的身份,以你的名义发送恶意请求。

    CSRF攻击是源于WEB的隐式身份验证机制!WEB的身份验证机制虽然可以保证一个请求是来自于某个用户的浏览器,但却无法保证该请求是用户批准发送的!

    防御方式:1.验证码;2. 后台生成token,让前端请求携带。3.使用对称加密,后端随机给前端一个密钥,前端进行加密,后端解密。

    会话劫持通过暴力破解、 预测、窃取(通过XSS攻击)等方式获取到用户session

    XSS攻击XSS攻击是Web攻击中最常见的攻击方法之一,它是通过对网页注入可执行代码且成功地被浏览器执行,达到攻击的目的,形成了一次有效XSS攻击,一旦攻击成功,它可以获取用户的联系人列表,然后向联系人发送虚假诈骗信息,可以删除用户的日志等等,有时候还和其他攻击方式同时实施比如SQL注入攻击服务器和数据库、Click劫持、相对链接劫持等实施钓鱼,它带来的危害是巨大的,是web安全的头号大敌。

    XSS反射型攻击,恶意代码并没有保存在目标网站,通过引诱用户点击一个链接到目标网站的恶意链接来实施攻击的。

    XSS存储型攻击,恶意代码被保存到目标网站的服务器中,这种攻击具有较强的稳定性和持久性,比较常见场景是在博客,论坛等社交网站上,但OA系统,和CRM系统上也能看到它身影,比如:某CRM系统的客户投诉功能上存在XSS存储型漏洞,黑客提交了恶意攻击代码,当系统管理员查看投诉信息时恶意代码执行,窃取了客户的资料,然而管理员毫不知情,这就是典型的XSS存储型攻击。

    解决方法

    在表单提交或者url参数传递前,对需要的参数进行过滤

    过滤用户输入。检查用户输入的内容中是否有非法内容。如<>(尖括号)、”(引号)、 ‘(单引号)、%(百分比符号)、;(分号)、()(括号)、&(& 符号)、+(加号)等

    28.RPC与HTTP服务的区别

    数据库原理

    MYISAM与innodb搜索引擎原理MyISAM引擎使用B+Tree作为索引结构,叶节点的data域存放的是数据记录的地址。其采用索引文件与数据文件,索引文件只存放索引,叶子节点存放数据的物理地址。数据文件存放数据。其索引方式是非聚集的。

    InnoDB也使用B+Tree作为索引结构。但是它的主索引与数据都放在一个文件中。这种索引叫做聚集索引,因为InnoDB的数据文件本身要按主键聚集,所以InnoDB要求表必须有主键(MyISAM可以没有),如果没有显式指定,则MySQL系统会自动选择一个可以唯一标识数据记录的列作为主键,如果不存在这种列,则MySQL自动为InnoDB表生成一个隐含字段作为主键,这个字段长度为6个字节,类型为长整形。

    区别一:InnoDB的主索引与数据都放在一个文件中。而MYISAM是分开存放的。

    区别二:InnoDB的辅助索引data域存储相应记录主键的值而不是地址。

    区别三:InnoDB的主键索引是聚集索引,而MYISAM不是聚集索引。

    3.索引,聚簇索引和二级索引的加锁区别

    聚集(clustered)索引,也叫聚簇索引。数据行的物理顺序与列值(一般是主键的那一列)的逻辑顺序相同,一个表中只能拥有一个聚集索引。

    非聚集(unclustered)索引。该索引中索引的逻辑顺序与磁盘上行的物理存储顺序不同,一个表中可以拥有多个非聚集索引。会发生二次查询。

    稠密索引:稠密索引文件中的索引块保持键的顺序与文件中的排序顺序一致。

    稀疏索引:稀疏索引没有为每个数据都创建一个索引,它比稠密索引节省了更多的存储空间,但查找给定值的记录需更多的时间。只有当数据文件是按照某个查找键排序时,在该查找键上建立的稀疏索引才能被使用,而稠密索引则可以应用在任何的查找键。

    联合索引:将一张表中多个列组成联合索引(col1,col2,col3),其生效方式满足最左前缀原则。

    覆盖索引:对于二级索引而言,在innodb中一般是需要先根据二级索引查询到主键,然后在根据一级索引查询到数据。但是如果select的列都在索引中,就避免进行一级查询。

    4.主键选择

    在使用InnoDB存储引擎时,如果没有特别的需要,请永远使用一个与业务无关的自增字段作为主键。

    where 1 = 1:能够方便我们拼sql,但是使用了之后就无法使用索引优化策略,因此会进行全表扫描,影响效率。

    5.分表分库

    水平拆分:依据表中的数据的逻辑关系,将同一个表中的数据依照某种条件拆分到多台数据库(主机)上面。按照1个或多个字段以及相应的规则,将一张表重的数据分到多张表中去。比如按照id%5的规则,将一张大表拆分成5张小表。适合具有超大表的系统。

    垂直拆分:依照不同的表(或者Schema)来切分到不同的数据库(主机)之上。一般按照模块来分库。适合各业务之间耦合度非常低的系统。

    6.隔离级别

    read uncommit:读不加锁,写加共享锁。会产生脏读、幻读。

    read commit:读加共享锁,写加排它锁,但不加间隙锁。间隙锁的主要作用是防止不可重复读,但会加大锁的范围。

    repeatable read(innodb默认):读加共享锁,写加间隙排它锁。注意,Innodb对这个级别进行了特殊处理,使得这个级别能够避免幻读,但不是所有引擎都能够防止幻读!(网易面试官问)

    serialization:会给整张表加锁,强一致,但是效率低。

    7.innodb中的锁

    MVCC(multi-Version Concurrency Control):读不加锁,读写不冲突。适合写少读多的场景。读操作分为:快照读(返回记录的可见版本,不加锁)、当前读(记录的最新版本,加锁,保证其它记录不修改)。

    LBCC(Lock-Based Concurrency Control):

    join原理Simple Nested-Loop Join:效率最低,按照join的次序,在join的属性上一个个扫描,并合并结果。

    Index Nested-Loop Join:效率最高,join的属性上面有索引,根据索引来匹配。

    Block Nested-Loop Join:用于没有索引的列。它会采用join buffer,将外表的值缓存到join buffer中,然后与内表进行批量比较,这样可以降低对外表的访问频率

    8.galera

    多主架构:真正的多点读写的集群,在任何时候读写数据,都是最新的。

    同步复制,各节点间无延迟且节点宕机不会导致数据丢失。

    紧密耦合,所有节点均保持相同状态,节点间无不同数据。

    无需主从切换操作。

    无需进行读写分离。

    并发复制:从节点在APPLY数据时,支持并行执行,有更好的性能表现。

    故障切换:在出现数据库故障时,因为支持多点写入,切的非常容易。

    热插拔:在服务期间,如果数据库挂了,只要监控程序发现的够快,不可服务时间就会非常少。在节点故障期间,节点本身对集群的影响非常小。

    自动节点克隆:在新增节点,或者停机维护时,增量数据或者基础数据不需要人工手动备份提供,Galera Cluster会自动拉取在线节点数据,最终集群会变为一致。

    对应用透明:集群的维护,对应用程序是透明的,几乎感觉不到。

    9.LSM Tree,主要应用于nessDB、leveldb、hbase

    核心思想的核心就是放弃部分读能力,换取写入的最大化能力。它假设假定内存足够大,因此不需要每次有数据更新就必须将数据写入到磁盘中,而可以先将最新的数据驻留在内存中,等到积累到最后多之后,再使用归并排序的方式将内存内的数据合并追加到磁盘队尾。(使用归并排序是要因为带排序树都是有序树)

    LSM具有批量特性,存储延迟。B树在insert的时候可能会造成分裂,可能会造成随机读写。而LSM将多次单页随机写,变成一次多页随机写,复用了磁盘寻道时间,极大提升效率。

    LSM Tree放弃磁盘读性能来换取写的顺序性。

    一般会使用Bloom Filter来优化LSM。当将内存中的数据与磁盘数据合并的时候,先要判断数据是否有重复,如果不用Bloom Filter就需要在磁盘上一层层地找,而使用了之后就会降低搜索代价。

    多线程

    synchronized、CAS

    Collections

    支持高并发的数据结构,如ConcurrentHashMap

    基于AQS实现的锁、信号量、计数器原理

    Runnable与Callable的区别

    线程池

    作用

    减少在创建和销毁线程上所花的时间以及系统资源的开销 。

    当前任务与主线程隔离,能实现和主线程的异步执行,特别是很多可以分开重复执行的任务。

    8.阻塞队列

    9.threadlocal

    Spring框架

    IOC/DI

    Core、Beans、Context、Expression Language

    JDBC、ORM、OXM、JMS、Transaction

    AOP

    Web

    Test

    @Autowired原理

    工厂模式

    反射

    自动配置@ConfigurationProperties(prefix = "hello"):读取以hello为开头的配置,属性类使用

    @Configuration:指名当前类为配置类

    @EnableConfigurationProperties(Properties):指名配置属性类

    @ConditionalOnClass(Condition.class):条件类,只有Condition.class存在,当前配置类才生效

    Spring Boot在spring.factories配置了很多全限定名的配置类。

    Redis

    核心原理

    常用数据类型String:二进制安全,可以存任何数据,比如序列化的图片。最大长度位512M.

    Hash:是KV对集合,本质是String类型的KV映射,适合存储对象。

    List:简单字符串链表,可以在left、right两边插入,本质是双向链表。缓冲区也是用这个实现。

    Set:String类型的无序集合,内部实现是一个 value永远为null的HashMap,实际就是通过计算hash的方式来快速排重的,这也是set能提供判断一个成员是否在集合内的原因。

    zset:有序集合,每个元素会关联一个double类型的score,然后根据score进行排序。注意:元素不能重复,但是score是可以重复的。使用HashMap和跳跃表(SkipList)来保证数据的存储和有序,HashMap里放的是成员到score的映射,而跳跃表里存放的是所有的成员,排序依据是HashMap里存的score.

    pub/sub:在Redis中,你可以设定对某一个key值进行消息发布及消息订阅,当一个key值上进行了消息发布后,所有订阅它的客户端都会收到相应的消息。

    持久化

    RDB:一种是手动执行持久化命令来持久化快照;另一种是在配置文件中配置策略,来自动持久化。持久化命令有save、bgsave两种,bgsave会调用fork命令,产生子进程来进行持久化,而父进程继续处理数据,但是持久化的快照是fork那一刻的快照,因此这种策略可能会丢失一部分数据。特点:每次都记录所有数据,恢复快,子进程不影响父进程性能。

    AOF:append only file,将每条操作命令都记录到appendonly.aof文件中,但是不会立马写入硬盘,我们可以配置always(每有一个命令,都同步)、everysec(每秒同步一次)、no(没30秒同步一次)。往往everysec就够了。aof数据损失要比RDB小。特点:有序记录所有操作,数据丢失更少,会对操作做压缩优化,bgrewriteaof也会fork子进程,不影响父进程性能

    事务

    Transactions:不是严格的ACID的事务,但是这个Transactions还是提供了基本的命令打包执行的功能(在服务器不出问题的情况下,可以保证一连串的命令是顺序在一起执行的,中间有会有其它客户端命令插进来执行)。

    Redis还提供了一个Watch功能,你可以对一个key进行Watch,然后再执行Transactions,在这过程中,如果这个Watched的值进行了修改,那么这个Transactions会发现并拒绝执行。

    KafKA

    topic

    broker

    partition

    consumer

    producer

    stream

    存储机制

    网络模型

    注意:partition之间是无序的

    消息队列的生产者消费者中消费者没有收到消息怎么办,消息有顺序比如1.2.3但是收到的却是1.3.2怎么办?消息发过来的过程中损坏或者出错怎么办

    Spring security

    拦截器栈

    @PreAuthorize

    @PostAuthorize

    支持Expression Language

    jvm原理

    内存模型、垃圾收集器、CMS与G1是重点

    垃圾收集算法

    标记-清除(CMS)容易产生碎片,当碎片太多会提前触发Full GC

    复制(年轻代基本用这个算法)会浪费一半的可能感觉

    标记-整理(serial Old、Parallel Old)

    Serial:采用单线程stop-the-world的方式进行收集。当内存不足时,串行GC设置停顿标识,待所有线程都进入安全点(Safepoint)时,应用线程暂停,串行GC开始工作,采用单线程方式回收空间并整理内存。串行收集器特别适合堆内存不高、单核甚至双核CPU的场合。

    ParNew

    Parallel Scavenge

    CMS:

    初始标记(stop of world)

    并行标记、预清理

    重新标记(stop of world)

    并行清理

    G1

    将堆分成很多region,可以同时堆年轻代与老年代进行收集

    初始标记(stop of world):初始标记(Initial Mark)负责标记所有能被直接可达的根对象(原生栈对象、全局对象、JNI对象)

    并行标记:

    重新标记(stop of world):

    清理(stop of world):

    重置

    gc触发条件

    从年轻代分区拷贝存活对象时,无法找到可用的空闲分区,会触发Minor GC

    从老年代分区转移存活对象时,无法找到可用的空闲分区,会触发Major GC

    分配巨型对象时在老年代无法找到足够的连续分区,会触发Major GC

    可达性分析:通过检查一块内存空间能否被root达到,来判断是否对其进行回收。

    jdk不同版本新增的部分特性

    jvm调优

    VisualVM:JDK自带JVM可视化工具,能过对内存、gc、cpu、thread、class、变量等等信息进行可视化。

    设计模式

    单例双重检查

    观察者模式

    装饰者模式:jdk中输入输出流用到了该模式

    适配器模式:jdk中Reader、writer用到了该模式

    代理模式

    静态代理

    JDK动态代理

    Cglib到动态代理

    生产者消费者模式

    工厂模式

    项目管理与运维工具

    git+Jenkins

    maven

    K8Spod:Pod是所有业务类型的基础,所有的容器均在Pod中运行,它是一个或多个容器的组合。每一个Pod都会被指派一个唯一的Ip地址,在Pod中的每一个容器共享网络命名空间,包括Ip地址和网络端口。Pod能够被指定共享存储卷的集合,在Pod中所有的容器能够访问共享存储卷,允许这些容器共享数据。

    kubelet:kubelet负责管理pods和它们上面的容器,images镜像、volumes、etc。

    ingress,用于负载均衡

    docker

    docker与虚拟机的区别

    数据结构

    平衡二叉树AVL

    高度log(n)

    插入时间复杂度log(n)

    红黑树

    插入时间复杂度log(n)

    查找时间复杂度log(n)

    在查找是,红黑树虽然复杂度也是log(n),但是从效率上比要略低于AVL。但是其优势在于插入元素的时候,不会像AVL那样频繁地旋转。

    B+Tree:只有叶子节点存值,非叶子节点只存key和child,因此同样大小的物理页上能存放更多的节点。每一层的节点数量越多,意味着层次越少,也就意味着IO次数越少,因此非常适合数据库以及文件系统。

    大根堆:采用数组存储树,是一个完全树。先插入到数组最后的位置上,然后采用上浮的思想,将该元素与比它小的父元素调换,直到parent>target,浮到root;然后将root与未排序的最后一个元素交换位置;重复以上步骤,直到所有元素都有序。插入如查找的复杂度都是log(n)。

    优先队列PriorityQueue,Java中使用小根堆实现,非线程安全。

    优先阻塞队列PriorityBlockQueue,线程安全。

    算法

    快排

    时间复杂度O(nlog(n))

    空间复杂度O(log(n))

    堆排序

    时间复杂度O(nlog(n))

    空间复杂度O(1)

    归并排序

    时间复杂度O(nlog(n))

    空间复杂度O(n)

    跳表时间复杂度O(log(n))

    空间复杂度O(2n)

    高度O(log(n))

    分布式

    cap理论

    可用性

    一致性

    分区容忍性:对网络断开的容忍度,有点像鲁棒性

    拜占庭将军问题

    Raft 算法

    有leader、follower、candidate

    同步流程

    由客户端提交数据到Leader节点。

    由Leader节点把数据复制到集群内所有的Follower节点。如果一次复制失败,会不断进行重试。

    Follower节点们接收到复制的数据,会反馈给Leader节点。

    如果Leader节点接收到超过半数的Follower反馈,表明复制成功。于是提交自己的数据,并通知客户端数据提交成功。

    由Leader节点通知集群内所有的Follower节点提交数据,从而完成数据同步流程。

    zookeeper

    Zab(Zookeeper Atomic Broadcast)协议,有两种模式:

    它们分别是:恢复模式(选主)和广播模式(同步)。

    有两种算法:1. basic paxos;2. fast paxos(默认)

    文件系统:zookeeper的通知机制、分布式锁、队列管理、配置管理都是基于文件系统的。

    分布式锁:有了zookeeper的一致性文件系统,锁的问题变得容易。锁服务可以分为两类,一个是保持独占,另一个是控制时序。

    独占锁:将zookeeper上的一个znode看作是一把锁,通过createznode的方式来实现。所有客户端都去创建 /distribute_lock 节点,最终成功创建的那个客户端也即拥有了这把锁。用完删除掉自己创建的distribute_lock 节点就释放出锁。

    控制时序锁:/distribute_lock 已经预先存在,所有客户端在它下面创建临时顺序编号目录节点,和选master一样,编号最小的获得锁,用完删除。

    队列管理,分为同步队列、非同步队列

    数据复制的好处

    容错:一个节点出错,不致于让整个系统停止工作,别的节点可以接管它的工作;

    提高系统的扩展能力 :把负载分布到多个节点上,或者增加节点来提高系统的负载能力;

    提高性能:让客户端本地访问就近的节点,提高用户访问速度。

    5.一致性hash算法原理

    微服务

    Spring cloud

    网关:zuul

    分布式版本化配置 config

    服务注册和发现:Eureka,配置时需要注意多久刷新列表一次,多久监测心跳等。

    service-to-service 调用

    负载均衡:Ribbon;在生成RestTemplate的bean时,通过@LoadBalanced注解可以使得RestTemplate的调用

    断路器:Hystrix

    监控:spring admin。在启动类上加@EnableAdminServer注解。

    java web

    servlet工作原理

    tomcat工作原理,好文,强推

    container

    linux

    系统结构,讲得很好,强推

    硬链接与软连接

    硬链接:数据节点通过引用计数的方式来对指向它的硬链接计数,当计数为0就删除。

    软连接:我们可以把它看成是快捷方式,它只是记录了某个文件的硬链接的路径,如果我们把源文件删除,再重新创建一个相同名字的文件,那么软连接指向的就是新创建的文件。

    虚拟文件系统(VFS):文件系统是有很多实现的,比如ext2、ext3、FAT等等,而VFS则是存在于应用程序与文件系统中间,它封装了open、close、read、write等等操作文件系统的接口,为应用程序屏蔽掉不同文件系统之间的差异。

    VFS数据结构

    其它

    bitmap,大文件交集

    Elasticsearch索引原理

    从内存到屏幕经历了啥

    高并发场景的限流,你怎么来确定限流限多少,模拟场景和实际场景有区别怎么解决,

    百度面试

    说一下redis与kafka,redis持久化策略

    git中rebase与merge区别

    docker底层原理,依赖操作系统的什么

    ls -l | grep xxx的执行过程,尽可能的细,是多进程还是单进程?

    两个有序数组求中位数

    算法 3Sum、中序遍历非递归实现、循环打印矩阵

    final、finally、finanize

    jvm内存模型

    垃圾回收器

    Spring特点介绍下

    Synchronize与ReentrantLock的区别、使用场景

    CAS使用场景

    聊了下git+jekins+K8S+docker实现自动化部署

    innodb原理,使用场景,与MYISAM在场景上的区别

    weakReference、softReference等

    Hbase的原理,LSM Tree

    Linux中,哪种进程可以使用管道

    美团

    权限模型

    介绍下线程池,阻塞队列的用法,无界队列真的无界吗?

    说一下redis

    kafka存储模型与网络模型

    zookeeper与redis实现分布式锁

    乐观锁与悲观锁

    算法:有n个人,给你ai与aj的身高关系,如ai比aj高,进行身高排序,如果条件不满足,则输出“不满足”

    Spring boot的特性

    ---------------------

    作者:Java填坑之路

    来源:CSDN

    原文:https://blog.csdn.net/yelvgou9995/article/details/82999460

    版权声明:本文为博主原创文章,转载请附上博文链接!

    相关文章

      网友评论

        本文标题:最全技术面试180题:阿里11面试+网易+百度+美团!

        本文链接:https://www.haomeiwen.com/subject/jqvuxqtx.html