美文网首页
爬虫 之 极验验证码

爬虫 之 极验验证码

作者: 煎炼 | 来源:发表于2018-12-20 21:02 被阅读0次

验证码的另一种方法:极验验证码,

此文章代码非原创,如有侵权,请告知删除。

我们以bilibili为例:https://passport.bilibili.com/login

1-1

首先需要找到验证码的图片,一个是背景图片,一个缺口图片

1-2 1-3

将这些图片碎片下载下来

browser = webdriver.Chrome()

browser.get(url)

bg = []

fullgb = []

while bg == []and fullgb == []:

    bf = BeautifulSoup(browser.page_source,'lxml')

#找到图片

    bg = bf.find_all('div',class_='gt_cut_bg_slice')

    fullgb = bf.find_all('div',class_='gt_cut_fullbg_slice')

#正则匹配图片的url

bg_url = re.findall('url\(\"(.*)\"\);', bg[0].get('style'))[0].replace('webp','jpg')

fullgb_url = re.findall('url\(\"(.*)\"\);', fullgb[0].get('style'))[0].replace('webp','jpg')

bg_location_list = []

fullbg_location_list = []

for each_bg in bg:

    location = {}

    location['x'] =int(re.findall('background-position: (.*)px (.*)px;', each_bg.get('style'))[0][0])

    location['y'] =int(re.findall('background-position: (.*)px (.*)px;', each_bg.get('style'))[0][1])

    #将图片碎片存放在一个列表中

    bg_location_list.append(location)

for each_fullgb in fullgb:

    location = {}

    location['x'] =int(re.findall('background-position: (.*)px (.*)px;', each_fullgb.get('style'))[0][0])

    location['y'] =int(re.findall('background-position: (.*)px (.*)px;', each_fullgb.get('style'))[0][1])

    #将图片碎片存放在一个列表中

    fullbg_location_list.append(location)

# 把资源下载到临时目录

urlretrieve(url=bg_url,filename='bg.jpg')

print('缺口图片下载完成')

urlretrieve(url=fullgb_url,filename='fullbg.jpg')

print('背景图片下载完成')

1-4

图片是乱序的,需要排序

然后将乱序的图片排序后重新保存一下,两张图片都需要排序

im = image.open('fullbg.jpg')

new_im = image.new('RGB', (260,116))

im_list_upper = []

im_list_down = []

#循环图片列表,开始还原图片

for location in fullbg_location_list:

    if location['y'] == -58:

        im_list_upper.append(im.crop((abs(location['x']),58,abs(location['x']) +10,166)))

    if location['y'] ==0:

        im_list_down.append(im.crop((abs(location['x']),0,abs(location['x']) +10,58)))

new_im = image.new('RGB', (260,116))

x_offset =0

for imin im_list_upper:

    new_im.paste(im, (x_offset,0))

    x_offset += im.size[0]

x_offset =0

for imin im_list_down:

    new_im.paste(im, (x_offset,58))

    x_offset += im.size[0]

new_im.save('fullbg1.jpg')

1-5

还原完成之后就是能根据两张图片像素之间的差别确定缺口的位置,然后计算出滑块需要移动的距离,模拟滑块移动即可。

import random

import time

from selenium.webdriver import ActionChains

from selenium.webdriver.support import expected_conditions as EC

from selenium.webdriver.support.ui import WebDriverWait

from selenium.webdriver.common.by import By

from urllib.request import urlretrieve

from selenium import webdriver

from bs4 import BeautifulSoup

import PIL.Image as image

import re

class Crack():

    def __init__(self, username, passwd):

        self.url ='https://passport.bilibili.com/login'

        self.browser = webdriver.Chrome()

        self.wait = WebDriverWait(self.browser,100)

        self.BORDER =6

        self.passwd = passwd

        self.username = username

    def open(self):

        """打开浏览器,并输入查询内容"""

        self.browser.get(self.url)

        keyword =self.wait.until(EC.presence_of_element_located((By.ID,'login-username')))

        keyword.send_keys(self.username)

        keyword =self.wait.until(EC.presence_of_element_located((By.ID,'login-passwd')))

        keyword.send_keys(self.passwd)

        # bowton.click()

    def get_images(self, bg_filename='bg.jpg', fullbg_filename='fullbg.jpg'):

        """获取验证码图片:return: 图片的location信息"""

        bg = []

        fullgb = []

        while bg == []and fullgb == []:

            bf = BeautifulSoup(self.browser.page_source,'lxml')

            bg = bf.find_all('div',class_='gt_cut_bg_slice')

            fullgb = bf.find_all('div',class_='gt_cut_fullbg_slice')

        bg_url = re.findall('url\(\"(.*)\"\);', bg[0].get('style'))[0].replace('webp','jpg')

        fullgb_url = re.findall('url\(\"(.*)\"\);', fullgb[0].get('style'))[0].replace('webp','jpg')

        bg_location_list = []

        fullbg_location_list = []

        for each_bg in bg:

            location = {}

            location['x'] =int(re.findall('background-position: (.*)px (.*)px;', each_bg.get('style'))[0][0])

            location['y'] =int(re.findall('background-position: (.*)px (.*)px;', each_bg.get('style'))[0][1])

            bg_location_list.append(location)

        for each_fullgb in fullgb:

            location = {}

            location['x'] =int(re.findall('background-position: (.*)px (.*)px;', each_fullgb.get('style'))[0][0])

            location['y'] =int(re.findall('background-position: (.*)px (.*)px;', each_fullgb.get('style'))[0][1])

            fullbg_location_list.append(location)

        # 把资源下载到临时目录

        urlretrieve(url=bg_url,filename=bg_filename)

        print('缺口图片下载完成')

        urlretrieve(url=fullgb_url,filename=fullbg_filename)

        print('背景图片下载完成')

        return bg_location_list, fullbg_location_list

    def get_merge_image(self, filename, location_list):

        """根据位置对图片进行合并还原        :filename:图片        :location_list:图片位置"""

        im = image.open(filename)

        new_im = image.new('RGB', (260,116))

        im_list_upper = []

        im_list_down = []

        for location in location_list:

            if location['y'] == -58:

                im_list_upper.append(im.crop((abs(location['x']),58,abs(location['x']) +10,166)))

            if location['y'] ==0:

                im_list_down.append(im.crop((abs(location['x']),0,abs(location['x']) +10,58)))

        new_im = image.new('RGB', (260,116))

        x_offset =0

        for im in im_list_upper:

            new_im.paste(im, (x_offset,0))

            x_offset += im.size[0]

        x_offset =0

        for im in im_list_down:

            new_im.paste(im, (x_offset,58))

            x_offset += im.size[0]

        new_im.save(filename)

        return new_im

    def is_pixel_equal(self, img1, img2, x, y):

        """判断两个像素是否相同 :param image1: 图片1:param image2: 图片2:param x: 位置x         :param y: 位置y:return: 像素是否相同"""

        # 取两个图片的像素点

        pix1 = img1.load()[x, y]

        pix2 = img2.load()[x, y]

        threshold =60

        if (abs(pix1[0] - pix2[0]) < threshold and abs(pix1[1] - pix2[1]) < threshold and abs(

pix1[2] - pix2[2]) < threshold):

            return True

        else:

            return False

    def get_gap(self, img1, img2):

        """获取缺口偏移量:param img1: 不带缺口图片:param img2: 带缺口图片 :return"""

        left =43

        for i in range(left, img1.size[0]):

            for j in range(img1.size[1]):

                if not self.is_pixel_equal(img1, img2, i, j):

                    left = i

                    return left

        return left

    def get_track(self, distance):

        """根据偏移量获取移动轨迹 :param distance: 偏移量:return: 移动轨迹"""

        # 移动轨迹

        track = []

        # 当前位移

        current =0

        # 减速阈值

        mid = distance *0.8

        # 计算间隔

        t =0.05

        # 初速度

        v =0

        while current <1.5*distance:

            if current < mid:

                # 加速度为正2

                a =18

            else:

                # 加速度为负3

                a = -6

            # 初速度v0

            v0 = v

            # 当前速度v = v0 + at

            v = v0 + a * t

            # 移动距离x = v0t + 1/2 * a * t^2

            move = v0 * t +1 /2 * a * t * t

            # 当前位移

            current += move

            # 加入轨迹

            track.append(round(move))

            print('forword', current, distance)

        v =0

        while current - distance >2:

            a = -40

            v0 = v

            v = v0 + a * t

            # 移动距离x = v0t + 1/2 * a * t^2

            move = v0 * t +1 /2 * a * t * t

            # 当前位移

            current += move

            # 加入轨迹

            track.append(round(move))

            print('backword',current,distance)

        move = current - distance

        # 加入轨迹

        track.append(round(move))

        return track

    def get_slider(self):

        """获取滑块:return: 滑块对象"""

        while True:

            try:

                slider =self.browser.find_element_by_xpath("//div[@class='gt_slider_knob gt_show']")

                break

            except:

                time.sleep(0.5)

        return slider

    def move_to_gap(self, slider, track):

        """ 拖动滑块到缺口处:param slider: 滑块 :param track: 轨迹 :return:"""

        ActionChains(self.browser).click_and_hold(slider).perform()

        while track:

            #x = random.choice(track)

            x=track.pop(0)

            ActionChains(self.browser).move_by_offset(xoffset=x,yoffset=0).perform()

            #track.remove(x)

            time.sleep(0.01)

        time.sleep(2)

        print('release')

        ActionChains(self.browser).release(slider).perform()

        time.sleep(2)

        #self.browser.quit()

    def crack(self):

        # 打开浏览器

        self.open()

        # 保存的图片名字

        bg_filename ='./images/bg.jpg'

        fullbg_filename ='./images/fullbg.jpg'

        # 获取图片

        bg_location_list, fullbg_location_list =self.get_images(bg_filename, fullbg_filename)

        # 根据位置对图片进行合并还原

        bg_img =self.get_merge_image(bg_filename, bg_location_list)

        fullbg_img =self.get_merge_image(fullbg_filename, fullbg_location_list)

        # 获取缺口位置

        gap =self.get_gap(fullbg_img, bg_img)

        print('缺口位置', gap)

        track =self.get_track(gap -self.BORDER)

        print('滑动滑块')

        # 点按呼出缺口

        slider =self.get_slider()

        # 拖动滑块到缺口处

        self.move_to_gap(slider, track)

        time.sleep(1)

        mspan =self.browser.find_element_by_class_name('gt_info_content')

        info = mspan.text

        print('info:', info)

        try:

            if '怪物吃了拼图' in info:

                print(mspan.text)

                time.sleep(2)

                self.crack()

            elif '正确拼合' in info:

                self.crack()

        except Exception as e:

            print(e)

if __name__ =='__main__':

    crack = Crack('username','passwd')

    crack.crack()

    print('验证成功')

1-6

相关文章

  • 极验验证码破解—超详细教程(二)

    极验验证码破解—超详细教程(一) 极验验证码破解—超详细教程(二) 极验验证码破解—超详细教程(三) Gayhub...

  • 极验验证码破解—超详细教程(三)

    极验验证码破解—超详细教程(一) 极验验证码破解—超详细教程(二) 极验验证码破解—超详细教程(三) Gayhub...

  • 爬虫 之 极验验证码

    验证码的另一种方法:极验验证码, 此文章代码非原创,如有侵权,请告知删除。 我们以bilibili为例:https...

  • 极验验证码破解—超详细教程(一)

    [国家企业信用信息公示系统为例] 极验验证码破解—超详细教程(一) 极验验证码破解—超详细教程(二) 极验验证码破...

  • 验证码的识别

    验证码是一种反爬虫的措施,目前的验证码主要有图像验证码、极验滑动验证码、点触验证码、微博宫格验证码等。根据不同类型...

  • Python爬虫 | 滑动验证码破解

    极验验证码:需要手动拼合滑块来完成的验证,相对图形验证码识别难度上升了几个等级。下面用程序识别并通过极验验证码的验...

  • Python破解极验滑动验证码

    极验滑动验证码 现在极验验证码广泛应用于直播视频、金融服务、电子商务、游戏娱乐、政府企业等各大类型网站 对于这类验...

  • 【Python】Python3网络爬虫实战-44、点触点选验证码

    上一节我们实现了极验验证码的识别,但是除了极验其实还有另一种常见的且应用广泛的验证码,比较有代表性的就是点触验证码...

  • 爬虫笔记(10)插曲 挑战极限验证码

    1.前言 既然有爬虫的存在那就有反爬虫技术的存在,验证码是常见手段,不过最近发现不少网站使用极限验证码。对于普通验...

  • ThinkPHP使用极验验证

    1、极验验证官网http://www.geetest.com/,与以往传统验证码不同的是,极验通过分析用户完成拼图...

网友评论

      本文标题:爬虫 之 极验验证码

      本文链接:https://www.haomeiwen.com/subject/jscykqtx.html