ResNet

作者: 一颗大葡萄树 | 来源:发表于2020-07-28 10:10 被阅读0次

    普通深度学习结构的问题:当网络结构到达一定深度时,更深的网络会带来更高的训练误差。
    误差升高的原因是:更深的网络梯度消失现象会更明显,所以在backpropgation时无法有效的将梯度更新到前面的网络层,靠前的网络层无法更新,导致训练和测试效果变差。
    解决的问题:在增加网络深度时,可以有效的解决梯度消失的问题。

    解决的方案是残差网络:
    残差网络增加了一个恒等映射,把当前的输出直接传给下一层网络。全部是1:1的传输不增加任何额外参数。相当于跳过了本层计算,所以这个连接命名是skip connection。

    如果遇到不等维度的传递一半用0来填充。
    shortcut填充选项

    • 恒等映射,如果残差块儿的输入输出维度不一样时,增加的维度用0填充
    • 在残差块输入输出维度一样时使用恒等映射,不一样时使用线性投影保持一致
    • 对于所有block都使用线性投影

    由于这三个效果差距很小,但是第一个选项是计算复杂度最低的而且对于更深的网络更有利

    Resnet特点:

    • 残差网络在表征方面不存在直接优势,并不能更好的表征某一方面的特征,但是Resnet允许逐层的深度表征更多模型。
    • 残差网络能使前馈式/反传播网络更顺利的进行,可使优化更深的模型更简单。
    • shortcut不产生额外参数不增加计算复杂度,能简单的添加到叠加层的输出。通过SGD,模型还是可以被训练成端到端的模式。

    相关文章

      网友评论

          本文标题:ResNet

          本文链接:https://www.haomeiwen.com/subject/jsgxrktx.html