美文网首页arXiv daily
机器学习每日论文速递[08.20]

机器学习每日论文速递[08.20]

作者: arXiv每日论文速递 | 来源:发表于2019-08-20 12:12 被阅读0次

同步公众号(arXiv每日论文速递),回复'search 关键词'查询相关最新论文。(* ̄rǒ ̄)

cs.LG 方向,今日共计112篇

[cs.LG]:

【1】 Efficient Discovery of Expressive Multi-label Rules using Relaxed Pruning
标题:使用松弛剪枝高效发现表现性多标签规则
作者: Yannik Klein, Eneldo Loza Mencía
备注:Preprint version. To appear in Proceedings of the 22nd International Conference on Discovery Science, 2019
链接:https://arxiv.org/abs/1908.06874

【2】 Towards Linearization Machine Learning Algorithms
标题:走向线性化的机器学习算法
作者: Steve Tueno
链接:https://arxiv.org/abs/1908.06871

【3】 Across-Stack Profiling and Characterization of Machine Learning Models on GPUs
标题:GPU上机器学习模型的跨栈分析和表征
作者: Cheng Li, Wen-mei Hwu
链接:https://arxiv.org/abs/1908.06869

【4】 The Role of Publicly Available Data in MICCAI Papers from 2014 to 2018
标题:2014-2018年公共数据在MICCAI论文中的作用
作者: Nicholas Heller, Nikolaos Papanikolopoulos
链接:https://arxiv.org/abs/1908.06830

【5】 Unexpected Effects of Online K-means Clustering
标题:在线K-means聚类的意想不到的效果
作者: Michal Moshkovitz
链接:https://arxiv.org/abs/1908.06818

【6】 The efficacy of various machine learning models for multi-class classification of RNA-seq expression data
标题:不同机器学习模型对RNA-seq表达数据多类分类的有效性
作者: Sterling Ramroach, Ajay Joshi
备注:12 pages, 4 figures, 3 tables, conference paper: Computing Conference 2019, published at this https URL
链接:https://arxiv.org/abs/1908.06817

【7】 Towards Efficient Discriminative Pattern Mining in Hybrid Domains
标题:面向高效的混合域判别模式挖掘
作者: Yoshitaka Kameya
备注:This paper is an English version of the paper originally presented in the 17th Forum on Information Technology (FIT 2018), a Japanese domestic conference held during September 19-21, 2018
链接:https://arxiv.org/abs/1908.06801

【8】 Self-Attention Based Molecule Representation for Predicting Drug-Target Interaction
标题:基于自我注意的分子表征预测药物-靶标相互作用
作者: Bonggun Shin, Joyce C. Ho
备注:18 pages, Proceedings of Machine Learning for Healthcare, 2019 (MLHC'19)
链接:https://arxiv.org/abs/1908.06760

【9】 Iterative Update and Unified Representation for Multi-Agent Reinforcement Learning
标题:多Agent强化学习的迭代更新和统一表示
作者: Jiancheng Long, Bo Xu
链接:https://arxiv.org/abs/1908.06758

【10】 BOAH: A Tool Suite for Multi-Fidelity Bayesian Optimization & Analysis of Hyperparameters
标题:BOAH:一个用于多保真度贝叶斯优化和超参数分析的工具套件
作者: Marius Lindauer, Frank Hutter
链接:https://arxiv.org/abs/1908.06756

【11】 A New Deterministic Technique for Symbolic Regression
标题:符号回归的一种新的确定性技术
作者: Daniel Rivero, Alejandro Pazos
链接:https://arxiv.org/abs/1908.06754

【12】 Automatic Compiler Based FPGA Accelerator for CNN Training
标题:基于自动编译器的CNN训练FPGA加速器
作者: Shreyas Kolala Venkataramanaiah, Jae-sun Seo
备注:6 pages, 9 figures, paper accepted at FPL2019 conference
链接:https://arxiv.org/abs/1908.06724

【13】 Robust and Efficient Fuzzy C-Means Clustering Constrained on Flexible Sparsity
标题:基于柔性稀疏度约束的鲁棒高效模糊C-均值聚类
作者: Jinglin Xu, Xuelong Li
链接:https://arxiv.org/abs/1908.06699

【14】 Towards Assessing the Impact of Bayesian Optimization's Own Hyperparameters
标题:贝叶斯优化自身超参数的影响评估
作者: Marius Lindauer, Frank Hutter
备注:Accepted at DSO workshop (as part of IJCAI'19)
链接:https://arxiv.org/abs/1908.06674

【15】 Intrinsically Motivated Exploration for Automated Discovery of Patterns in Morphogenetic Systems
标题:形态发生系统中模式自动发现的内在动机探索
作者: Chris Reinke, Pierre-Yves Oudeyer
链接:https://arxiv.org/abs/1908.06663

【16】 Deep Weisfeiler-Lehman Assignment Kernels via Multiple Kernel Learning
标题:基于多核学习的Deep Weisfeiler-Lehman赋值核
作者: Nils M. Kriege
备注:ESANN 2019
链接:https://arxiv.org/abs/1908.06661

【17】 Deep neural network or dermatologist?
标题:深层神经网络还是皮肤科医生?
作者: Kyle Young, Sally Shrapnel
链接:https://arxiv.org/abs/1908.06612

【18】 Transfer Learning-Based Label Proportions Method with Data of Uncertainty
标题:具有不确定性数据的基于转移学习的标签比例方法
作者: Yanshan Xiao, Bo Liu
链接:https://arxiv.org/abs/1908.06603

【19】 Mitigating Multi-Stage Cascading Failure by Reinforcement Learning
标题:通过强化学习减轻多阶段连锁故障
作者: Yongli Zhu, Chengxi Liu
备注:This paper has been accepted and presented in the IEEE ISGT-Asia conference in 2019
链接:https://arxiv.org/abs/1908.06599

【20】 PolyGAN: High-Order Polynomial Generators
标题:PolyGAN:高阶多项式生成器
作者: Grigorios Chrysos, Stefanos Zafeiriou
链接:https://arxiv.org/abs/1908.06571

【21】 Modeling Time to Open of Emails with a Latent State for User Engagement Level
标题:对具有用户参与级别潜在状态的电子邮件的打开时间进行建模
作者: Moumita Sinha, Harvineet Singh
备注:9 pages, 5 figures, WSDM'18, February 5-9, 2018, Marina Del Rey, CA, USA, this https URL
链接:https://arxiv.org/abs/1908.06512

【22】 Neural Network Based Undersampling Techniques
标题:基于神经网络的欠采样技术
作者: Md. Adnan Arefeen, M Sohel Rahman
链接:https://arxiv.org/abs/1908.06487

【23】 Demystifying Learning Rate Polices for High Accuracy Training of Deep Neural Networks
标题:用于深度神经网络高精度训练的学习速率策略的揭秘
作者: Yanzhao Wu, Qi Zhang
链接:https://arxiv.org/abs/1908.06477

【24】 SPOCC: Scalable POssibilistic Classifier Combination -- toward robust aggregation of classifiers
标题:SPOCC:可伸缩的可能性分类器组合-面向分类器的健壮聚合
作者: Mahmoud Albardan, Olivier Colot
链接:https://arxiv.org/abs/1908.06475

【25】 Investigating Convolutional Neural Networks using Spatial Orderness
标题:利用空间有序性研究卷积神经网络
作者: Rohan Ghosh, Anupam K. Gupta
备注:Presented at BMVC 2019: Workshop on Interpretable and Explainable Machine Vision, Cardiff, UK
链接:https://arxiv.org/abs/1908.06416

【26】 VUSFA:Variational Universal Successor Features Approximator to Improve Transfer DRL for Target Driven Visual Navigation
标题:VUSFA:用于改进目标驱动视觉导航的传输DRL的变分通用后继特征近似器
作者: Shamane Siriwardhana, Suranga Nanayakkara
链接:https://arxiv.org/abs/1908.06376

【27】 Robust DCD-Based Recursive Adaptive Algorithms
标题:基于DCD的鲁棒递归自适应算法
作者: Y. Yu, R. C. de Lamare
链接:https://arxiv.org/abs/1908.06369

【28】 Verification of Neural Network Control Policy Under Persistent Adversarial Perturbation
标题:持续对抗性扰动下神经网络控制策略的验证
作者: Yuh-Shyang Wang, Luca Daniel
链接:https://arxiv.org/abs/1908.06353

【29】 Structural Health Monitoring of Cantilever Beam, a Case Study -- Using Bayesian Neural Network AND Deep Learning
标题:悬臂梁结构健康监测实例研究-贝叶斯神经网络和深度学习
作者: Rahul Vashisht, S.Sumitra
链接:https://arxiv.org/abs/1908.06326

【30】 Implicit Deep Learning
标题:内隐深度学习
作者: Laurent El Ghaoui, Armin Askari
链接:https://arxiv.org/abs/1908.06315

【31】 ED2: Two-stage Active Learning for Error Detection -- Technical Report
标题:ED2:错误检测的两阶段主动学习-技术报告
作者: Felix Neutatz, Ziawasch Abedjan
链接:https://arxiv.org/abs/1908.06309

【32】 Nesterov Accelerated Gradient and Scale Invariance for Improving Transferability of Adversarial Examples
标题:Nesterov加速梯度和尺度不变性提高对抗性例子的可传递性
作者: Jiadong Lin, John E. Hopcroft
链接:https://arxiv.org/abs/1908.06281

【33】 Integrated Multi-omics Analysis Using Variational Autoencoders: Application to Pan-cancer Classification
标题:使用变分自动编码器的集成多组学分析:在泛癌分类中的应用
作者: Xiaoyu Zhang, Yike Guo
链接:https://arxiv.org/abs/1908.06278

【34】 A Batched Multi-Armed Bandit Approach to News Headline Testing
标题:一种批量多臂强盗新闻标题测试方法
作者: Yizhi Mao, Don Matheson
备注:IEEE BigData, 2018
链接:https://arxiv.org/abs/1908.06256

【35】 A Symbolic Neural Network Representation and its Application to Understanding, Verifying, and Patching Network
标题:符号神经网络表示及其在理解、验证和修补网络中的应用
作者: Matthew Sotoudeh, Aditya V. Thakur
链接:https://arxiv.org/abs/1908.06223

【36】 Computing Linear Restrictions of Neural Networks
标题:计算神经网络的线性约束
作者: Matthew Sotoudeh, Aditya V. Thakur
链接:https://arxiv.org/abs/1908.06214

【37】 Distributional Negative Sampling for Knowledge Base Completion
标题:用于知识库完成的分布式负抽样
作者: Sarthak Dash, Alfio Gliozzo
链接:https://arxiv.org/abs/1908.06178

【38】 CLUTRR: A Diagnostic Benchmark for Inductive Reasoning from Text
标题:CLUTRR:文本归纳推理的诊断基准
作者: Koustuv Sinha, William L. Hamilton
备注:Accepted at EMNLP 2019, 9 page content + Appendix
链接:https://arxiv.org/abs/1908.06177

【39】 Detecting abnormalities in resting-state dynamics: An unsupervised learning approach
标题:检测静息状态动力学中的异常:一种无监督的学习方法
作者: Meenakshi Khosla, Mert R. Sabuncu
链接:https://arxiv.org/abs/1908.06168

【40】 Online Feature Selection for Activity Recognition using Reinforcement Learning with Multiple Feedback
标题:基于多反馈强化学习的活动在线特征选择
作者: Taku Yamagata, Atis Elsts (University of Bristol)
链接:https://arxiv.org/abs/1908.06134

【41】 Dynamic Graph Message Passing Networks
标题:动态图消息传递网络
作者: Li Zhang, Philip H.S. Torr
链接:https://arxiv.org/abs/1908.06955

【42】 Gradient Boosting Machine: A Survey
标题:梯度升压机综述
作者: Zhiyuan He, Mike Wu
链接:https://arxiv.org/abs/1908.06951

【43】 Consistent Community Detection in Continuous-Time Networks of Relational Events
标题:关系事件连续时间网络中的一致性社区检测
作者: Makan Arastuie, Kevin S. Xu
链接:https://arxiv.org/abs/1908.06940

【44】 Deep Active Lesion Segmentation
标题:深层主动病变分割
作者: Ali Hatamizadeh, Demetri Terzopoulos
备注:Accepted to Machine Learning in Medical Imaging (MLMI 2019)
链接:https://arxiv.org/abs/1908.06933

【45】 Neural Architectures for Nested NER through Linearization
标题:通过线性化的嵌套NER的神经结构
作者: Jana Straková, Jan Hajič
备注:Accepted by ACL 2019
链接:https://arxiv.org/abs/1908.06926

【46】 A new asymmetric ε-insensitive pinball loss function based support vector quantile regression model
标题:一种新的基于非对称ε不敏感弹球损失函数的支持向量分位数回归模型
作者: Pritam Anand, Suresh Chandra
链接:https://arxiv.org/abs/1908.06923

【47】 Computational Flight Control: A Domain-Knowledge-Aided Deep Reinforcement Learning Approach
标题:计算飞行控制:一种领域知识辅助的深度强化学习方法
作者: Hyo-Sang Shin, Antonios Tsourdos
链接:https://arxiv.org/abs/1908.06884

【48】 Comparing linear structure-based and data-driven latent spatial representations for sequence prediction
标题:比较基于线性结构和数据驱动的潜在空间表示进行序列预测
作者: Myriam Bontonou (IMT Atlantique - ELEC, Nicolas Farrugia (IMT Atlantique - ELEC)
链接:https://arxiv.org/abs/1908.06868

【49】 Heartbeat Classification in Wearables Using Multi-layer Perceptron and Time-Frequency Joint Distribution of ECG
标题:基于多层感知器和ECG时频联合分布的可穿戴式心跳分类
作者: Anup Das, Siebren Schaafsma
链接:https://arxiv.org/abs/1908.06865

【50】 A persistent homology approach to heart rate variability analysis with an application to sleep-wake classification
标题:心率变异性分析的持续同源性方法及其在睡眠-觉醒分类中的应用
作者: Yu-Min Chung, Hau-Tieng Wu
链接:https://arxiv.org/abs/1908.06856

【51】 SIRUS: making random forests interpretable
标题:Sirus:让随机森林变得可解释
作者: Clément Bénard (LPSM UMR 8001), Erwan Scornet (CMAP)
链接:https://arxiv.org/abs/1908.06852

【52】 A Reproducible Analysis of RSSI Fingerprinting for Outdoor Localization Using Sigfox: Preprocessing and Hyperparameter Tuning
标题:使用Sigfox进行室外定位的RSSI指纹可重复性分析:预处理和超参数调整
作者: Grigorios G. Anagnostopoulos, Alexandros Kalousis
备注:Preprint of a paper to be presented in IPIN2019
链接:https://arxiv.org/abs/1908.06851

【53】 Classification of chaotic time series with deep learning
标题:基于深度学习的混沌时间序列分类
作者: Nicolas Boullé, D. Samaddar
链接:https://arxiv.org/abs/1908.06848

【54】 Federated Learning for Wireless Communications: Motivation, Opportunities and Challenges
标题:无线通信联合学习:动机、机遇与挑战
作者: Solmaz Niknam, Jeffery H. Reed
链接:https://arxiv.org/abs/1908.06847

【55】 Deep Task-Based Quantization
标题:深度任务量化
作者: Nir Shlezinger, Yonina C. Eldar
链接:https://arxiv.org/abs/1908.06845

【56】 ProSper -- A Python Library for Probabilistic Sparse Coding with Non-Standard Priors and Superpositions
标题:Prosper-具有非标准先验和叠加的概率稀疏编码Python库
作者: Georgios Exarchakis, Jörg Lücke
链接:https://arxiv.org/abs/1908.06843

【57】 Style Transfer for Texts: to Err is Human, but Error Margins Matter
标题:文本的风格转换:错误是人类的,但错误的余量很重要
作者: Alexey Tikhonov, Ivan P. Yamshchikov
链接:https://arxiv.org/abs/1908.06809

【58】 Wi-Fringe: Leveraging Text Semantics in WiFi CSI-Based Device-Free Named Gesture Recognition
标题:Wi-Fringe:在基于WiFi CSI的设备中利用文本语义-Free命名手势识别
作者: Md Tamzeed Islam, Shahriar Nirjon
链接:https://arxiv.org/abs/1908.06803

【59】 Diagnosing Cardiac Abnormalities from 12-Lead Electrocardiograms Using Enhanced Deep Convolutional Neural Networks
标题:用增强型深层卷积神经网络从12导联心电图诊断心脏异常
作者: Binhang Yuan, Wenhui Xing
备注:Accepted by MLMECH-MICCAI 2019
链接:https://arxiv.org/abs/1908.06802

【60】 Data Consistent Artifact Reduction for Limited Angle Tomography with Deep Learning Prior
标题:基于深度学习的有限角度层析成像数据一致性伪影消除
作者: Yixing Huang, Andreas Maier
链接:https://arxiv.org/abs/1908.06792

【61】 Continuous Relaxation of Symbolic Planner for One-Shot Imitation Learning
标题:用于一次性模仿学习的符号规划器的连续松弛
作者: De-An Huang, Juan Carlos Niebles
备注:IROS 2019
链接:https://arxiv.org/abs/1908.06769

【62】 Propagation Channel Modeling by Deep learning Techniques
标题:基于深度学习技术的传播信道建模
作者: Shirin Seyedsalehi, Ali Hossein Gharari Foumani
链接:https://arxiv.org/abs/1908.06767

【63】 Towards Generating Ambisonics Using Audio-Visual Cue for Virtual Reality
标题:利用视听提示生成虚拟现实中的变声学
作者: Aakanksha Rana, Aljoscha Smolic
备注:ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
链接:https://arxiv.org/abs/1908.06752

【64】 A Kings Ransom for Encryption: Ransomware Classification using Augmented One-Shot Learning and Bayesian Approximation
标题:用于加密的Kings Ransom:使用增强单次学习和贝叶斯近似的勒索软件分类
作者: Amir Atapour-Abarghouei, Andrew Stephen McGough
备注:Submitted to 2019 IEEE International Conference on Big Data
链接:https://arxiv.org/abs/1908.06750

【65】 Maize Yield and Nitrate Loss Prediction with Machine Learning Algorithms
标题:基于机器学习算法的玉米产量和硝酸盐损失预测
作者: Mohsen Shahhosseini, Sotirios V. Archontoulis
链接:https://arxiv.org/abs/1908.06746

【66】 Autoregressive-Model-Based Methods for Online Time Series Prediction with Missing Values: an Experimental Evaluation
标题:基于自回归模型的缺失值在线时间序列预测方法:实验评估
作者: Xi Chen, Hong Gao
链接:https://arxiv.org/abs/1908.06729

【67】 Learning to Advertise for Organic Traffic Maximization in E-Commerce Product Feeds
标题:学习在电子商务产品馈送中为有机流量最大化做广告
作者: Dagui Chen, Kun Gai
备注:accepted by CIKM2019
链接:https://arxiv.org/abs/1908.06698

【68】 Learning to play the Chess Variant Crazyhouse above World Champion Level with Deep Neural Networks and Human Data
标题:利用深度神经网络和人类数据学习玩国际象棋变种Crazyhouse高于世界冠军水平
作者: Johannes Czech, Johannes Fürnkranz
备注:35 pages, 19 figures, 14 tables
链接:https://arxiv.org/abs/1908.06660

【69】 Quantum Expectation-Maximization for Gaussian Mixture Models
标题:高斯混合模型的量子期望最大化
作者: Iordanis Kerenidis, Anupam Prakash
链接:https://arxiv.org/abs/1908.06657

【70】 Quantum Expectation-Maximization Algorithm
标题:量子期望最大化算法
作者: Hideyuki Miyahara, Wolfgang Lechner
链接:https://arxiv.org/abs/1908.06655

【71】 A Computational Model for Tensor Core Units
标题:张量核心单元的计算模型
作者: Francesco Silvestri, Flavio Vella
链接:https://arxiv.org/abs/1908.06649

【72】 Bilingual Lexicon Induction with Semi-supervision in Non-Isometric Embedding Spaces
标题:非等距嵌入空间中具有半监督的双语词汇归纳
作者: Barun Patra, Graham Neubig
备注:ACL 2019
链接:https://arxiv.org/abs/1908.06625

【73】 Long and Diverse Text Generation with Planning-based Hierarchical Variational Model
标题:基于规划的层次化变分模型生成长而多样的文本
作者: Zhihong Shao, Xiaoyan Zhu
备注:To appear in EMNLP 2019
链接:https://arxiv.org/abs/1908.06605

【74】 Adversarial Defense by Suppressing High-frequency Components
标题:抑制高频成分的对抗性防御
作者: Zhendong Zhang, Xiaolong Liang
备注:3 pages. This paper is a technical report of the 5th place solution in the IJCAI-2019 Alibaba Adversarial AI Challenge. This paper has been accepted by the corresponding workshop
链接:https://arxiv.org/abs/1908.06566

【75】 Recurrent Graph Syntax Encoder for Neural Machine Translation
标题:用于神经机器翻译的递归图语法编码器
作者: Liang Ding, Dacheng Tao
链接:https://arxiv.org/abs/1908.06559

【76】 Transfer in Deep Reinforcement Learning using Knowledge Graphs
标题:基于知识图的深度强化学习中的迁移
作者: Prithviraj Ammanabrolu, Mark O. Riedl
链接:https://arxiv.org/abs/1908.06556

【77】 Benchmarks for Graph Embedding Evaluation
标题:用于图嵌入评估的基准
作者: Palash Goyal, Emilio Ferrara
链接:https://arxiv.org/abs/1908.06543

【78】 Weakly Supervised Segmentation by A Deep Geodesic Prior
标题:基于深度测地先验的弱监督分割
作者: Aliasghar Mortazi, Ulas Bagci
备注:Accepted to Machine Learning in Medical Imaging (MLMI 2019)
链接:https://arxiv.org/abs/1908.06498

【79】 TwistBytes -- Hierarchical Classification at GermEval 2019: walking the fine line (of recall and precision)
标题:TwistBytes-GermEval 2019年的层次分类:走在细线上(回忆和精确度)
作者: Fernando Benites
链接:https://arxiv.org/abs/1908.06493

【80】 A Consistent Independence Test for Multivariate Time-Series
标题:多元时间序列的一致独立性检验
作者: Ronak Mehta, Joghua T. Vogelstein
链接:https://arxiv.org/abs/1908.06486

【81】 Scalable Explanation of Inferences on Large Graphs
标题:大图上推论的可伸缩解释
作者: Chao Chen, Sihong Xie
备注:Submitted to ICDM 2019
链接:https://arxiv.org/abs/1908.06482

【82】 Training Deep Learning Models via Synthetic Data: Application in Unmanned Aerial Vehicles
标题:通过合成数据训练深度学习模型:在无人机中的应用
作者: Andreas Kamilaris, Savvas Karatsiolis
备注:Workshop on Deep-learning based computer vision for UAV in conjunction with CAIP 2019, Salerno, italy, September 2019
链接:https://arxiv.org/abs/1908.06472

【83】 Efficient Context Aggregation for End-to-End Speech Enhancement Using a Densely Connected Convolutional and Recurrent Network
标题:使用密集连接的卷积和循环网络的用于端到端语音增强的高效上下文聚合
作者: Kai Zhen, Minje Kim
链接:https://arxiv.org/abs/1908.06468

【84】 RefNet: A Reference-aware Network for Background Based Conversation
标题:RefNet:一个基于背景对话的参考感知网络
作者: Chuan Meng, Maarten de Rijke
链接:https://arxiv.org/abs/1908.06449

【85】 TDAM: a Topic-Dependent Attention Model for Sentiment Analysis
标题:TDAM:一种用于情感分析的主题相关注意模型
作者: Gabriele Pergola, Yulan He
链接:https://arxiv.org/abs/1908.06435

【86】 Towards Better Generalization: BP-SVRG in Training Deep Neural Networks
标题:走向更好的泛化:BP-SVRG在深层神经网络训练中的应用
作者: Hao Jin, Zhihua Zhang
链接:https://arxiv.org/abs/1908.06395

【87】 Geometric Disentanglement for Generative Latent Shape Models
标题:生成潜形模型的几何解缠
作者: Tristan Aumentado-Armstrong, Sven Dickinson
备注:ICCV 2019
链接:https://arxiv.org/abs/1908.06386

【88】 Concurrent Parsing of Constituency and Dependency
标题:选民和依赖的并发解析
作者: Junru Zhou, Hai Zhao
链接:https://arxiv.org/abs/1908.06379

【89】 Spike-Train Level Backpropagation for Training Deep Recurrent Spiking Neural Networks
标题:用于训练深度循环尖峰神经网络的Spike-Train水平反向传播
作者: Wenrui Zhang, Peng Li
备注:Submitted to NeurIPS 2019
链接:https://arxiv.org/abs/1908.06378

【90】 Anomaly Detection in Video Sequence with Appearance-Motion Correspondence
标题:基于外观-运动对应的视频序列异常检测
作者: Trong Nguyen Nguyen, Jean Meunier
备注:Paper accepted for ICCV 2019
链接:https://arxiv.org/abs/1908.06351

【91】 Hybrid Deep Network for Anomaly Detection
标题:用于异常检测的混合深度网络
作者: Trong Nguyen Nguyen, Jean Meunier
备注:Paper accepted for BMVC 2019
链接:https://arxiv.org/abs/1908.06347

【92】 EigenRank by Committee: A Data Subset Selection and Failure Prediction paradigm for Robust Deep Learning based Medical Image Segmentation
标题:EigenRank by Committee:基于稳健深度学习的医学图像分割的数据子集选择和故障预测范例
作者: Bilwaj Gaonkar, Luke Macyszyn
链接:https://arxiv.org/abs/1908.06337

【93】 What is needed for simple spatial language capabilities in VQA?
标题:VQA中的简单空间语言功能需要什么?
作者: Alexander Kuhnle, Ann Copestake
链接:https://arxiv.org/abs/1908.06336

【94】 Prune Sampling: a MCMC inference technique for discrete and deterministic Bayesian networks
标题:剪枝抽样:一种用于离散和确定性贝叶斯网络的MCMC推理技术
作者: Frank Phillipson, Ron Weikamp
链接:https://arxiv.org/abs/1908.06335

【95】 Locally Linear Embedding and fMRI feature selection in psychiatric classification
标题:精神病分类中的局部线性嵌入和fMRI特征选择
作者: Gagan Sidhu
备注:Main article is 10 pages. Supplementary Information is approximately 20 pages and includes figures/results for six additional datasets, along with performance plots (as a function of dimensionality parameter 'd'), proportion(s) of brain regions defined by the respective atlases, subject ID partitioning for all eleven datasets
链接:https://arxiv.org/abs/1908.06319

【96】 U-CAM: Visual Explanation using Uncertainty based Class Activation Maps
标题:U-CAM:使用基于不确定性的类激活映射的可视解释
作者: Badri N. Patro, Vinay P. Namboodiri
备注:ICCV 2019 (accepted)
链接:https://arxiv.org/abs/1908.06306

【97】 Deep Meta Functionals for Shape Representation
标题:用于形状表示的深元泛函
作者: Gidi Littwin, Lior Wolf
链接:https://arxiv.org/abs/1908.06277

【98】 A Sensitivity Analysis of Attention-Gated Convolutional Neural Networks for Sentence Classification
标题:注意门控卷积神经网络用于句子分类的灵敏度分析
作者: Yang Liu, Jinghua Qu
链接:https://arxiv.org/abs/1908.06263

【99】 Zero Shot Learning for Multi-Modal Real Time Image Registration
标题:用于多模态实时图像配准的零激发学习
作者: Avinash Kori, Ganapathi Krishnamurthi
链接:https://arxiv.org/abs/1908.06213

【100】 On the Adversarial Robustness of Subspace Learning
标题:子空间学习的对抗性鲁棒性研究
作者: Fuwei Li, Shuguang Cui
链接:https://arxiv.org/abs/1908.06210

【101】 Parametric Majorization for Data-Driven Energy Minimization Methods
标题:数据驱动能量最小化方法的参数优化
作者: Jonas Geiping, Michael Moeller
备注:16 pages, 5 figures, accepted for ICCV 2019
链接:https://arxiv.org/abs/1908.06209

【102】 Conv2Warp: An unsupervised deformable image registration with continuous convolution and warping
标题:Conv2Warp:一种具有连续卷积和翘曲的无监督可变形图像配准
作者: Sharib Ali, Jens Rittscher
备注:8 pages (accepted at 10th International Workshop on Machine Learning in Medical Imaging, in conjunction with MICCAI2019)
链接:https://arxiv.org/abs/1908.06194

【103】 Multi-View Broad Learning System for Primate Oculomotor Decision Decoding
标题:灵长类眼动决策解码的多视角宽学习系统
作者: Zhenhua Shi, Dongrui Wu
链接:https://arxiv.org/abs/1908.06180

【104】 The History of Digital Spam
标题:数字垃圾邮件的历史
作者: Emilio Ferrara
链接:https://arxiv.org/abs/1908.06173

【105】 A Survey of Challenges and Opportunities in Sensing and Analytics for Cardiovascular Disorders
标题:心血管疾病传感与分析的挑战与机遇综述
作者: Nathan C. Hurley, Bobak J. Mortazavi
备注:32 pages, 3 figures, to be submitted to ACM Transactions on Computing for Healthcare (HEALTH), Special Issue on Wearable Technologies for Smart Health 2019
链接:https://arxiv.org/abs/1908.06170

【106】 Cross-Domain Collaborative Filtering via Translation-based Learning
标题:基于翻译学习的跨域协同过滤
作者: Dimitrios Rafailidis
备注:arXiv admin note: text overlap with arXiv:1907.01645
链接:https://arxiv.org/abs/1908.06169

【107】 Accelerated learning from recommender systems using multi-armed bandit
标题:使用多臂强盗从推荐系统中加速学习
作者: Meisam Hejazinia, Ravi Divvela
链接:https://arxiv.org/abs/1908.06158

【108】 Using Near Infrared Spectroscopy and Machine Learning to diagnose Systemic Sclerosis
标题:利用近红外光谱和机器学习诊断系统性硬化症
作者: Joelle Feijó de França, Emery Cleiton Cabral Correia Lins
链接:https://arxiv.org/abs/1908.06137

【109】 Learning Representations and Agents for Information Retrieval
标题:信息检索的学习表示和Agent
作者: Rodrigo Nogueira
链接:https://arxiv.org/abs/1908.06132

【110】 Average-Case Lower Bounds for Learning Sparse Mixtures, Robust Estimation and Semirandom Adversaries
标题:学习稀疏混合,稳健估计和半随机对手的平均情况下界
作者: Matthew Brennan, Guy Bresler
链接:https://arxiv.org/abs/1908.06130

【111】 Shallow Domain Adaptive Embeddings for Sentiment Analysis
标题:用于情感分析的浅域自适应嵌入
作者: Prathusha K Sarma, William A Sethares
链接:https://arxiv.org/abs/1908.06082

【112】 Analyzing the Fine Structure of Distributions
标题:分析分布的精细结构
作者: Michael C. Thrun, Alfred Ultsch
链接:https://arxiv.org/abs/1908.06081

翻译:腾讯翻译君

相关文章

网友评论

    本文标题:机器学习每日论文速递[08.20]

    本文链接:https://www.haomeiwen.com/subject/jtausctx.html