美文网首页arXiv daily
机器学习每日论文速递[08.01]

机器学习每日论文速递[08.01]

作者: arXiv每日论文速递 | 来源:发表于2019-08-01 11:22 被阅读5次

    同步wx号(arXiv每日论文速递),支持后台回复'search 关键词'查询相关的最新论文。有些许帮助的话,麻烦关注一下哦(* ̄rǒ ̄)

    cs.LG 方向,今日共计47篇

    [cs.LG]:

    【1】 On Mutual Information Maximization for Representation Learning
    标题:表征学习中的互信息最大化问题
    作者: Michael Tschannen, Mario Lucic
    链接:https://arxiv.org/abs/1907.13625

    【2】 Privately Answering Classification Queries in the Agnostic PAC Model
    标题:不可知性PAC模型中的私人应答分类查询
    作者: Raef Bassily, Anupama Nandi
    链接:https://arxiv.org/abs/1907.13553

    【3】 Optimal Attacks on Reinforcement Learning Policies
    标题:强化学习策略的最优攻击
    作者: Alessio Russo, Alexandre Proutiere
    链接:https://arxiv.org/abs/1907.13548

    【4】 Local Interpretation Methods to Machine Learning Using the Domain of the Feature Space
    标题:基于特征空间域的机器学习局部解释方法
    作者: Tiago Botari, Andre C. P. L. F. de Carvalho
    链接:https://arxiv.org/abs/1907.13525

    【5】 A novel framework of the fuzzy c-means distances problem based weighted distance
    标题:基于加权距离的模糊c-均值距离问题的一种新框架
    作者: Andy Arief Setyawan, Ahmad Ilham
    备注:25 pages, 6 figure, was submitted online submission at the Applied Computing and Informatics, Elsevier, July 18, 2019. King Saud University, Riyadh, Saudi Arabia
    链接:https://arxiv.org/abs/1907.13513

    【6】 Graph Space Embedding
    标题:图空间嵌入
    作者: João Pereira, Evgeni Levin
    链接:https://arxiv.org/abs/1907.13443

    【7】 MineRL: A Large-Scale Dataset of Minecraft Demonstrations
    标题:MineRL:一个大型的“我的世界”演示数据集
    作者: William H. Guss, Ruslan Salakhutdinov
    备注:Accepted at IJCAI 2019, 7 pages, 6 figures. arXiv admin note: text overlap with arXiv:1904.10079
    链接:https://arxiv.org/abs/1907.13440

    【8】 Neural Network based Explicit Mixture Models and Expectation-maximization based Learning
    标题:基于神经网络的显式混合模型和基于期望最大化的学习
    作者: Dong Liu, Lars K. Rasmussen
    链接:https://arxiv.org/abs/1907.13432

    【9】 Inverse Reinforcement Learning with Multiple Ranked Experts
    标题:具有多个等级专家的反向强化学习
    作者: Pablo Samuel Castro, Daqing Zhang
    链接:https://arxiv.org/abs/1907.13411

    【10】 Deep Neural Network Hyperparameter Optimization with Orthogonal Array Tuning
    标题:基于正交阵列调谐的深度神经网络超参数优化
    作者: Xiang Zhang, Manqing Dong
    链接:https://arxiv.org/abs/1907.13359

    【11】 A Novel Multiple Classifier Generation and Combination Framework Based on Fuzzy Clustering and Individualized Ensemble Construction
    标题:一种新的基于模糊聚类和个性化集成构造的多分类器生成与组合框架
    作者: Zhen Gao, Jianhua Ruan
    链接:https://arxiv.org/abs/1907.13353

    【12】 A comparative study of general fuzzy min-max neural networks for pattern classification problems
    标题:用于模式分类问题的一般模糊min-max神经网络的比较研究
    作者: Thanh Tung Khuat, Bogdan Gabrys
    备注:18 pages, 7 figures, 12 tables
    链接:https://arxiv.org/abs/1907.13308

    【13】 Influence Maximization with Few Simulations
    标题:只需很少的模拟即可实现影响最大化
    作者: Gal Sadeh, Haim Kaplan
    链接:https://arxiv.org/abs/1907.13301

    【14】 Are Outlier Detection Methods Resilient to Sampling?
    标题:异常值检测方法对采样有弹性吗?
    作者: Laure Berti-Equille, Saravanan Thirumuruganathan
    备注:18 pages
    链接:https://arxiv.org/abs/1907.13276

    【15】 Optimizing Multi-GPU Parallelization Strategies for Deep Learning Training
    标题:面向深度学习训练的多GPU并行化策略优化
    作者: Saptadeep Pal, Puneet Gupta
    链接:https://arxiv.org/abs/1907.13257

    【16】 A Temporal Clustering Algorithm for Achieving the trade-off between the User Experience and the Equipment Economy in the Context of IoT
    标题:物联网环境下实现用户体验与设备经济性权衡的时间聚类算法
    作者: Caio Ponte, Vasco Furtado
    链接:https://arxiv.org/abs/1907.13246

    【17】 Multi-Agent Adversarial Inverse Reinforcement Learning
    标题:多智能体对抗逆强化学习
    作者: Lantao Yu, Stefano Ermon
    备注:ICML 2019
    链接:https://arxiv.org/abs/1907.13220

    【18】 Deep Learning Training on the Edge with Low-Precision Posits
    标题:基于低精度假设的边缘深度学习训练
    作者: Hamed F. Langroudi, Dhireesha Kudithipudi
    链接:https://arxiv.org/abs/1907.13216

    【19】 Wasserstein Robust Reinforcement Learning
    标题:Wasserstein鲁棒强化学习
    作者: Mohammed Amin Abdullah, Jun Wang
    链接:https://arxiv.org/abs/1907.13196

    【20】 Towards More Accurate Automatic Sleep Staging via Deep Transfer Learning
    标题:通过深度转移学习实现更准确的自动睡眠分期
    作者: Huy Phan, Maarten De Vos
    链接:https://arxiv.org/abs/1907.13177

    【21】 Disentangled Relational Representations for Explaining and Learning from Demonstration
    标题:用于解释和学习演示的解缠关系表示
    作者: Yordan Hristov, Subramanian Ramamoorthy
    链接:https://arxiv.org/abs/1907.13627

    【22】 Multi-Point Bandit Algorithms for Nonstationary Online Nonconvex Optimization
    标题:非平稳在线非凸优化的多点Bandit算法
    作者: Abhishek Roy, Prasant Mohapatra
    链接:https://arxiv.org/abs/1907.13616

    【23】 MSNM-S: An Applied Network Monitoring Tool for Anomaly Detection in Complex Networks and Systems
    标题:MSNm-S:一种适用于复杂网络和系统异常检测的网络监控工具
    作者: Roberto Magán-Carrión, Ángel Ruíz-Zafra
    链接:https://arxiv.org/abs/1907.13612

    【24】 Attention-Wrapped Hierarchical BLSTMs for DDI Extraction
    标题:用于DDI抽取的关注包裹分层BLSTM
    作者: Vahab Mostafapour, Oğuz Dikenelli
    链接:https://arxiv.org/abs/1907.13561

    【25】 Personalizing ASR for Dysarthric and Accented Speech with Limited Data
    标题:在有限数据的情况下个性化用于Dysarthric和重音语音的ASR
    作者: Joel Shor, Yossi Matias
    链接:https://arxiv.org/abs/1907.13511

    【26】 Topological Machine Learning with Persistence Indicator Functions
    标题:具有持久性指标函数的拓扑机学习
    作者: Bastian Rieck, Heike Leitte
    备注:Topology-based Methods in Visualization 2017
    链接:https://arxiv.org/abs/1907.13496

    【27】 Persistent Intersection Homology for the Analysis of Discrete Data
    标题:离散数据分析的持久相交同调
    作者: Bastian Rieck, Heike Leitte
    备注:Topology-based Methods in Visualization 2017
    链接:https://arxiv.org/abs/1907.13485

    【28】 Nonconvex Zeroth-Order Stochastic ADMM Methods with Lower Function Query Complexity
    标题:具有较低函数查询复杂度的非凸零阶随机ADMM方法
    作者: Feihu Huang, Heng Huang
    备注:29 pages, 9 figures and 2 tables. arXiv admin note: text overlap with arXiv:1905.12729
    链接:https://arxiv.org/abs/1907.13463

    【29】 Optimizing vaccine distribution networks in low and middle-income countries
    标题:优化中低收入国家的疫苗分销网络
    作者: Yuwen Yang, Jayant Rajgopal
    链接:https://arxiv.org/abs/1907.13434

    【30】 Uncertainty Quantification in Deep Learning for Safer Neuroimage Enhancement
    标题:更安全的神经图像增强的深度学习不确定性量化
    作者: Ryutaro Tanno, Daniel C. Alexander
    链接:https://arxiv.org/abs/1907.13418

    【31】 A Leisurely Look at Versions and Variants of the Cross Validation Estimator
    标题:悠闲地查看交叉验证估计器的版本和变体
    作者: Waleed A. Yousef
    链接:https://arxiv.org/abs/1907.13413

    【32】 Embedding Human Heuristics in Machine-Learning-Enabled Probe Microscopy
    标题:在机器学习使能探针显微镜中嵌入人类启发式算法
    作者: O. Gordon, P. Moriarty
    链接:https://arxiv.org/abs/1907.13401

    【33】 Incremental Learning Techniques for Semantic Segmentation
    标题:用于语义切分的增量式学习技术
    作者: Umberto Michieli, Pietro Zanuttigh
    链接:https://arxiv.org/abs/1907.13372

    【34】 Multi-task Generative Adversarial Learning on Geometrical Shape Reconstruction from EEG Brain Signals
    标题:脑电信号几何形状重建的多任务生成性对抗性学习
    作者: Xiang Zhang, Lina Yao
    链接:https://arxiv.org/abs/1907.13351

    【35】 Competing Ratio Loss for Discriminative Multi-class Image Classification
    标题:区分多类图像分类的竞争比损失
    作者: Ke Zhang, Tony X. Han
    链接:https://arxiv.org/abs/1907.13349

    【36】 Simple Unsupervised Summarization by Contextual Matching
    标题:基于上下文匹配的简单无监督摘要
    作者: Jiawei Zhou, Alexander M. Rush
    链接:https://arxiv.org/abs/1907.13337

    【37】 Generative Adversarial Networks (GAN) for compact beam source modelling in Monte Carlo simulations
    标题:蒙特卡罗模拟中用于紧凑束源建模的生成对抗性网络(GAN)
    作者: David Sarrut, Jean-Michel Létang
    链接:https://arxiv.org/abs/1907.13324

    【38】 Robust stochastic optimization with the proximal point method
    标题:基于邻近点方法的鲁棒随机优化
    作者: Damek Davis, Dmitriy Drusvyatskiy
    链接:https://arxiv.org/abs/1907.13307

    【39】 Semi-supervised Compatibility Learning Across Categories for Clothing Matching
    标题:面向服装匹配的跨类别半监督相容性学习
    作者: Zekun Li, Liang Wang
    备注:6 pages, 4 figures, accepted by ICME2019
    链接:https://arxiv.org/abs/1907.13304

    【40】 PrecoderNet: Hybrid Beamforming for Millimeter Wave Systems Using Deep Reinforcement Learning
    标题:PrecderNet:使用深度强化学习的毫米波系统混合波束形成
    作者: Qisheng Wang, Keming Feng
    链接:https://arxiv.org/abs/1907.13266

    【41】 SenseFitting: Sense Level Semantic Specialization of Word Embeddings for Word Sense Disambiguation
    标题:SenseFitting:词义消歧的词义嵌入的语义特化
    作者: Manuel Stoeckel, Alexander Mehler
    备注:Sketch for LREC 2020 submission
    链接:https://arxiv.org/abs/1907.13237

    【42】 Temporal coding in spiking neural networks with alpha synaptic function
    标题:具有α突触功能的尖峰神经网络中的时间编码
    作者: Iulia M. Comsa, Jyrki Alakuijala
    链接:https://arxiv.org/abs/1907.13223

    【43】 Learning over inherently distributed data
    标题:通过固有分布式数据学习
    作者: Donghui Yan, Ying Xu
    链接:https://arxiv.org/abs/1907.13208

    【44】 Marine Mammal Species Classification using Convolutional Neural Networks and a Novel Acoustic Representation
    标题:基于卷积神经网络和一种新的声学表示的海洋哺乳动物物种分类
    作者: Mark Thomas, Stan Matwin
    备注:16 pages, To appear in ECML-PKDD 2019
    链接:https://arxiv.org/abs/1907.13188

    【45】 Impact of Adversarial Examples on Deep Learning Models for Biomedical Image Segmentation
    标题:对抗性例子对生物医学图像分割深度学习模型的影响
    作者: Utku Ozbulak, Wesley De Neve
    备注:Accepted for the 22nd International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI-19)
    链接:https://arxiv.org/abs/1907.13124

    【46】 Learning Stabilizable Nonlinear Dynamics with Contraction-Based Regularization
    标题:基于收缩正则化的可稳定非线性动力学学习
    作者: Sumeet Singh, Marco Pavone
    备注:Invited submission for IJRR; under review. arXiv admin note: text overlap with arXiv:1808.00113
    链接:https://arxiv.org/abs/1907.13122

    【47】 Multi-Frame Cross-Entropy Training for Convolutional Neural Networks in Speech Recognition
    标题:语音识别中卷积神经网络的多帧交叉熵训练
    作者: Tom Sercu, Neil Mallinar
    链接:https://arxiv.org/abs/1907.13121

    翻译:腾讯翻译君

    相关文章

      网友评论

        本文标题:机器学习每日论文速递[08.01]

        本文链接:https://www.haomeiwen.com/subject/sphqdctx.html