美文网首页
2018-10-24

2018-10-24

作者: carpediemmlf | 来源:发表于2018-12-10 05:33 被阅读0次

    Contents

    • Oscillations
    • Waves
    • Application of Fourier Ideas
    • Optics
    • Interference of light

    Canonical form of Damped SHM

    \ddot{x}+\gamma\dot{x}+{\omega_0} ^2x=0

    • the spontaneous frequency
      \omega_0 = \sqrt {\frac{k}{m}}

    • the damping coefficient
      \gamma = \frac{b}{m}

    • Quality factor: the number of radians of phase elapsed as the amplitude falls to e^{-\frac{1}{2}}
      Q=\frac{\omega_0}{\gamma}

    • the system is critically damped when
      \gamma = 2 \omega_0

    Light damping Q>0.5

    • damped oscillation frequency
      \omega_f = \sqrt {{\omega_0} ^2 - \frac{\gamma^2}{4}} = \omega_0 \sqrt {1- \frac{Q^2}{4}}

    Heavy damping Q<0.5

    Critical damping Q=0.5

    • Notice the corresponding solution forms of three different cases

    Driven harmonic oscillation

    \ddot{x}+\gamma\dot{x}+{\omega_0} ^2x=\frac{F}{m}

    • The response function (1. obtain the harmonic x solution; 2. divide solution by F). can naturally devise the velocity and acceleration response function
      R(\omega) = \frac{1}{m[({\omega_0}^2 - {\omega}^2) + i\gamma \omega]} = \frac{{(\omega_0}^2 - {\omega}^2) - i\gamma \omega}{m[({\omega_0}^2 - {\omega}^2)^2 + \gamma ^2 \omega ^2]}

    • resonance frequency (differentiate to get)
      \omega_a = \omega_0 \sqrt {1 - \frac{\gamma^2}{2 {\omega_0} ^2}} = \omega_0 \sqrt {1 - \frac{1}{2Q^2}}

    相关文章

      网友评论

          本文标题:2018-10-24

          本文链接:https://www.haomeiwen.com/subject/jvxxfqtx.html