A small frog wants to get to the other side of the road. The frog is currently located at position X and wants to get to a position greater than or equal to Y. The small frog always jumps a fixed distance, D.
Count the minimal number of jumps that the small frog must perform to reach its target.
Write a function:
def solution(X, Y, D)
that, given three integers X, Y and D, returns the minimal number of jumps from position X to a position equal to or greater than Y.
For example, given:
X = 10
Y = 85
D = 30
the function should return 3, because the frog will be positioned as follows:
after the first jump, at position 10 + 30 = 40
after the second jump, at position 10 + 30 + 30 = 70
after the third jump, at position 10 + 30 + 30 + 30 = 100
Write an efficient algorithm for the following assumptions:
X, Y and D are integers within the range [1..1,000,000,000];
X ≤ Y.
这题好简单,没揣测明白出题点
def solution(X, Y, D):
# write your code in Python 3.6
if (Y-X)/D -(Y-X)//D >0:
return (Y-X)//D+1
else:
return (Y-X)//D
网友评论