美文网首页
Keras Layer自定义层

Keras Layer自定义层

作者: Matrix0 | 来源:发表于2020-08-21 10:55 被阅读0次
    from keras import backend as K
    from keras.engine.topology import Layer
    import numpy as np
    
    class MyLayer(Layer):
    
        def __init__(self, output_dim, **kwargs):
            self.output_dim = output_dim
            super(MyLayer, self).__init__(**kwargs)
    
        def build(self, input_shape):
            # Create a trainable weight variable for this layer.
            self.kernel = self.add_weight(name='kernel', 
                                          shape=(input_shape[1], self.output_dim),
                                          initializer='uniform',
                                          trainable=True)
            super(MyLayer, self).build(input_shape)  # Be sure to call this somewhere!
    
        def call(self, x):
            return K.dot(x, self.kernel)
    
        def compute_output_shape(self, input_shape):
            return (input_shape[0], self.output_dim)
    
    • build(input_shape):这是定义权重的方法,可训练的权应该在这里被加入列表self.trainable_weights中。其他的属性还包括self.non_trainabe_weights(列表)和self.updates(需要更新的形如(tensor, new_tensor)的tuple的列表)。你可以参考BatchNormalization层的实现来学习如何使用上面两个属性。这个方法必须设置self.built = True,可通过调用super([layer],self).build()实现
    • call(x):这是定义层功能的方法,除非你希望你写的层支持masking,否则你只需要关心call的第一个参数:输入张量
    • compute_output_shape(input_shape):如果你的层修改了输入数据的shape,你应该在这里指定shape变化的方法,这个函数使得Keras可以做自动shape推断

    参考keras文档

    相关文章

      网友评论

          本文标题:Keras Layer自定义层

          本文链接:https://www.haomeiwen.com/subject/jwcujktx.html