美文网首页我爱编程
用tensorflow实施一个简单的Image Classifi

用tensorflow实施一个简单的Image Classifi

作者: 海街diary | 来源:发表于2018-02-23 22:15 被阅读167次

    Coursera的Deep Learning中CNN课程第一周作业为实现一个简单的Image Classification,总结如下。

    输出

    1. 数据预处理

    主要包括将RGB值转化为0-1,以及reshape等操作

    X_train = X_train_orig/255.
    X_test = X_test_orig/255.
    Y_train = convert_to_one_hot(Y_train_orig, 6).T
    Y_test = convert_to_one_hot(Y_test_orig, 6).T
    print ("number of training examples = " + str(X_train.shape[0]))
    print ("number of test examples = " + str(X_test.shape[0]))
    print ("X_train shape: " + str(X_train.shape))
    print ("Y_train shape: " + str(Y_train.shape))
    print ("X_test shape: " + str(X_test.shape))
    print ("Y_test shape: " + str(Y_test.shape))
    conv_layers = {}
    

    结果如下

    number of training examples = 1080
    number of test examples = 120
    X_train shape: (1080, 64, 64, 3)
    Y_train shape: (1080, 6)
    X_test shape: (120, 64, 64, 3)
    Y_test shape: (120, 6)
    

    2. 创建placeholder

    为输入X, 和输出Y创建placeholder

    def create_placeholders(n_H0, n_W0, n_C0, n_y):
        """
        Creates the placeholders for the tensorflow session.
        
        Arguments:
        n_H0 -- scalar, height of an input image
        n_W0 -- scalar, width of an input image
        n_C0 -- scalar, number of channels of the input
        n_y -- scalar, number of classes
            
        Returns:
        X -- placeholder for the data input, of shape [None, n_H0, n_W0, n_C0] and dtype "float"
        Y -- placeholder for the input labels, of shape [None, n_y] and dtype "float"
        """
    
        ### START CODE HERE ### (≈2 lines)
        X = tf.placeholder(tf.float32, [None, n_H0, n_W0, n_C0])
        Y = tf.placeholder(tf.float32, [None, n_y])
        ### END CODE HERE ###
        
        return X, Y
    

    3.初始化参数

    第一个conv层的W1,size=4x4, channel=3, units=8; 第二个conv层的W2, size=2x2, channel=8, units=16。 均采用xavier_initializer.

    def initialize_parameters():
        """
        Initializes weight parameters to build a neural network with tensorflow. The shapes are:
                            W1 : [4, 4, 3, 8]
                            W2 : [2, 2, 8, 16]
        Returns:
        parameters -- a dictionary of tensors containing W1, W2
        """
        
        tf.set_random_seed(1)                              # so that your "random" numbers match ours
            
        ### START CODE HERE ### (approx. 2 lines of code)
        W1 = tf.get_variable("W1", [4,4,3,8], initializer=tf.contrib.layers.xavier_initializer(seed=0))
        W2 = tf.get_variable("W2", [2,2,8,16], initializer=tf.contrib.layers.xavier_initializer(seed=0))
        ### END CODE HERE ###
    
        parameters = {"W1": W1,
                      "W2": W2}
        
        return parameters
    

    4.Forward propagation

    结构为: CONV2D -> RELU -> MAXPOOL -> CONV2D -> RELU -> MAXPOOL -> FLATTEN -> FC

    def forward_propagation(X, parameters):
        """
        Implements the forward propagation for the model:
        CONV2D -> RELU -> MAXPOOL -> CONV2D -> RELU -> MAXPOOL -> FLATTEN -> FULLYCONNECTED
        
        Arguments:
        X -- input dataset placeholder, of shape (input size, number of examples)
        parameters -- python dictionary containing your parameters "W1", "W2"
                      the shapes are given in initialize_parameters
    
        Returns:
        Z3 -- the output of the last LINEAR unit
        """
        
        # Retrieve the parameters from the dictionary "parameters" 
        W1 = parameters['W1']
        W2 = parameters['W2']
        
        ### START CODE HERE ###
        # CONV2D: stride of 1, padding 'SAME'
        Z1 = tf.nn.conv2d(X, W1, strides=[1,1,1,1], padding='SAME')   # 64x64
        # RELU
        A1 = tf.nn.relu(Z1)
        # MAXPOOL: window 8x8, sride 8, padding 'SAME'
        P1 = tf.nn.max_pool(A1, ksize=[1,8,8,1], strides=[1,8,8,1], padding='SAME')    # 8x8
        # CONV2D: filters W2, stride 1, padding 'SAME'
        Z2 = tf.nn.conv2d(P1, W2, strides=[1,1,1,1], padding='SAME')
        # RELU
        A2 = tf.nn.relu(Z2)
        # MAXPOOL: window 4x4, stride 4, padding 'SAME'
        P2 = tf.nn.max_pool(A2, ksize=[1,4,4,1], strides=[1,4,4,1], padding="SAME")
        # FLATTEN
        P2 = tf.contrib.layers.flatten(P2)
        # FULLY-CONNECTED without non-linear activation function (not not call softmax).
        # 6 neurons in output layer. Hint: one of the arguments should be "activation_fn=None" 
        Z3 = tf.contrib.layers.fully_connected(P2, 6, activation_fn=None)
        ### END CODE HERE ###
        return Z3
    

    5. 计算损失函数

    采用softmax_cross_entropy损失度量

    def compute_cost(Z3, Y):
        """
        Computes the cost
        
        Arguments:
        Z3 -- output of forward propagation (output of the last LINEAR unit), of shape (6, number of examples)
        Y -- "true" labels vector placeholder, same shape as Z3
        
        Returns:
        cost - Tensor of the cost function
        """
        
        ### START CODE HERE ### (1 line of code)
        cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=Z3, labels=Y), axis=0)
        ### END CODE HERE ###
        
        return cost
    

    6. 整合,搭建模型

    将以上步骤整合。

    def model(X_train, Y_train, X_test, Y_test, learning_rate = 0.009,
          num_epochs = 100, minibatch_size = 64, print_cost = True):
        """
        Implements a three-layer ConvNet in Tensorflow:
        CONV2D -> RELU -> MAXPOOL -> CONV2D -> RELU -> MAXPOOL -> FLATTEN -> FULLYCONNECTED
        
        Arguments:
        X_train -- training set, of shape (None, 64, 64, 3)
        Y_train -- test set, of shape (None, n_y = 6)
        X_test -- training set, of shape (None, 64, 64, 3)
        Y_test -- test set, of shape (None, n_y = 6)
        learning_rate -- learning rate of the optimization
        num_epochs -- number of epochs of the optimization loop
        minibatch_size -- size of a minibatch
        print_cost -- True to print the cost every 100 epochs
        
        Returns:
        train_accuracy -- real number, accuracy on the train set (X_train)
        test_accuracy -- real number, testing accuracy on the test set (X_test)
        parameters -- parameters learnt by the model. They can then be used to predict.
        """
        
        ops.reset_default_graph()                         # to be able to rerun the model without overwriting tf variables
        tf.set_random_seed(1)                             # to keep results consistent (tensorflow seed)
        seed = 3                                          # to keep results consistent (numpy seed)
        (m, n_H0, n_W0, n_C0) = X_train.shape             
        n_y = Y_train.shape[1]                            
        costs = []                                        # To keep track of the cost
        
        # Create Placeholders of the correct shape
        ### START CODE HERE ### (1 line)
        X, Y = create_placeholders(n_H0, n_W0, n_C0, n_y)
        ### END CODE HERE ###
    
        # Initialize parameters
        ### START CODE HERE ### (1 line)
        parameters = initialize_parameters()
        ### END CODE HERE ###
        
        # Forward propagation: Build the forward propagation in the tensorflow graph
        ### START CODE HERE ### (1 line)
        Z3 = forward_propagation(X, parameters)
        ### END CODE HERE ###
        
        # Cost function: Add cost function to tensorflow graph
        ### START CODE HERE ### (1 line)
        cost = compute_cost(Z3, Y)
        ### END CODE HERE ###
        
        # Backpropagation: Define the tensorflow optimizer. Use an AdamOptimizer that minimizes the cost.
        ### START CODE HERE ### (1 line)
        optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
        ### END CODE HERE ###
        
        # Initialize all the variables globally
        init = tf.global_variables_initializer()
         
        # Start the session to compute the tensorflow graph
        with tf.Session() as sess:
            
            # Run the initialization
            sess.run(init)
            
            # Do the training loop
            for epoch in range(num_epochs):
    
                minibatch_cost = 0.
                num_minibatches = int(m / minibatch_size) # number of minibatches of size minibatch_size in the train set
                seed = seed + 1
                minibatches = random_mini_batches(X_train, Y_train, minibatch_size, seed)
    
                for minibatch in minibatches:
    
                    # Select a minibatch
                    (minibatch_X, minibatch_Y) = minibatch
                    # IMPORTANT: The line that runs the graph on a minibatch.
                    # Run the session to execute the optimizer and the cost, the feedict should contain a minibatch for (X,Y).
                    ### START CODE HERE ### (1 line)
                    _ , temp_cost = sess.run([optimizer, cost], feed_dict={X: minibatch_X,
                                                                           Y: minibatch_Y})
                    ### END CODE HERE ###
                    
                    minibatch_cost += temp_cost / num_minibatches
                    
    
                # Print the cost every epoch
                if print_cost == True and epoch % 5 == 0:
                    print ("Cost after epoch %i: %f" % (epoch, minibatch_cost))
                if print_cost == True and epoch % 1 == 0:
                    costs.append(minibatch_cost)
            
            
            # plot the cost
            plt.plot(np.squeeze(costs))
            plt.ylabel('cost')
            plt.xlabel('iterations (per tens)')
            plt.title("Learning rate =" + str(learning_rate))
            plt.show()
    
            # Calculate the correct predictions
            predict_op = tf.argmax(Z3, 1)
            correct_prediction = tf.equal(predict_op, tf.argmax(Y, 1))
            
            # Calculate accuracy on the test set
            accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
            print(accuracy)
            train_accuracy = accuracy.eval({X: X_train, Y: Y_train})
            test_accuracy = accuracy.eval({X: X_test, Y: Y_test})
            print("Train Accuracy:", train_accuracy)
            print("Test Accuracy:", test_accuracy)
                    
            return train_accuracy, test_accuracy, parameters
    

    call the model

    _, _, parameters = model(X_train, Y_train, X_test, Y_test)

    相关文章

      网友评论

        本文标题:用tensorflow实施一个简单的Image Classifi

        本文链接:https://www.haomeiwen.com/subject/jwdfxftx.html