Logistic Regression 是统计学习的经典分类算法,是一种 对数线性模型。
1、数据集与特征空间
2、假设空间
Logistic Regression 的假设函数由 对数几率(log odds) 假设推导而来。
3、目标函数及其推导
从极大似然估计的角度推出 Logistic Regression 的目标函数。
4、优化算法(梯度下降)
梯度向量 这里考虑两种方式:一种是基本的梯度下降,一种是只针对梯度的单位向量进行下降剔除其模长梯度下降由泰勒一阶展开推导而来,同理,可以由二阶展开推出牛顿法以及拟牛顿法,此处不予赘述
在实际应用中,使用逻辑斯回归建议进行如下处理:
1、特征标准化(z-scale),使所有特征的尺度缩放到 [-1,+1] 之间,避免出现锯齿效应,影响收敛速度。
2、考虑加入动量(Momentum),抑制震荡,加快收敛速度。
手写算法并与 Sklearn 进行对比
# -*- coding: utf-8 -*-
import numpy as np
import pandas as pd
from sklearn.utils import shuffle
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import StandardScaler
import matplotlib.pyplot as plt
class LogitRegModel(object):
def __init__(self, max_iter=5000, eta=0.01, alpha=0.5, beta=0.9):
self.max_iter = max_iter
self.eta = eta
self.alpha = alpha
self.beta = beta
def z_scale(self, x_train):
'''z标准化,在动用距离度量的算法中,必须先进行标准化以消除数据量纲的影响'''
mu = np.mean(x_train, axis=0)
std = np.std(x_train, axis=0)
return mu, std
def data_transform(self, mu, std, x_train, x_test):
'''
数据变换
1、执行标准化操作
2、插入截距项
'''
x_train_scale = (x_train - mu) / std
x_test_scale = (x_test - mu) / std
intercept_train = np.ones(x_train_scale.shape[0]).reshape(-1, 1)
intercept_test = np.ones(x_test_scale.shape[0]).reshape(-1, 1)
x_train_scale = np.concatenate([intercept_train, x_train_scale], axis=1)
x_test_scale = np.concatenate([intercept_test, x_test_scale], axis=1)
return x_train_scale, x_test_scale
def get_loss(self, x_train_scale, y_train, w):
'''计算损失函数值'''
loss = np.mean(np.log(1.0 + np.exp(-x_train_scale.dot(w) * y_train)))
return loss
def get_derivative(self, x_train_scale, y_train, w, dv):
'''计算梯度(含动量, beta = 0 则为原始梯度下降)'''
fenzi = -y_train * x_train_scale
fenmu = 1.0 + np.exp(x_train_scale.dot(w) * y_train)
dw = np.mean(fenzi / fenmu, axis=0)
dw = dw.reshape(-1, 1)
dv = self.beta * dv + (1 - self.beta) * dw
return dv
def fit(self, x_train_scale, y_train):
'''模型训练'''
# 参数初始化
w = np.zeros(x_train_scale.shape[1]) + 0.001
w = w.reshape(-1, 1)
dv = np.zeros_like(w)
# 损失值保存列表
loss_res = []
# 迭代
for epoch in range(self.max_iter):
# 计算梯度
dv = self.get_derivative(x_train_scale, y_train, w, dv)
# 梯度下降
w = w - self.eta * dv
# 更新损失值
loss = self.get_loss(x_train_scale, y_train, w)
loss_res.append(loss)
return w, loss_res
def predict(self, x_test_scale, w):
'''模型预测'''
y_pred_probs = 1.0 / (1.0 + np.exp(-x_test_scale.dot(w)))
y_pred = np.where(y_pred_probs > self.alpha, 1, -1)
return y_pred_probs, y_pred
def get_score(self, y_true, y_pred):
'''模型评估'''
score = sum(y_true == y_pred) / len(y_true)
return score
if __name__ == "__main__":
# 构造二分类数据集
N = 200; n = 4
x1 = np.random.uniform(low=1, high=5, size=[N, n]) + np.random.randn(N, n)
y1 = np.tile(-1, N)
x2 = np.random.uniform(low=5, high=10, size=[N, n]) + np.random.randn(N, n)
y2 = np.tile(1, N)
x = np.concatenate([x1, x2], axis=0)
y = np.concatenate([y1, y2]).reshape(-1, 1)
x, y = shuffle(x, y, random_state=0)
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2)
# 手写模型
model = LogitRegModel(max_iter=5000, eta=0.01, alpha=0.5, beta=0.9)
mu, std = model.z_scale(x_train)
x_train_scale, x_test_scale = model.data_transform(mu, std, x_train, x_test)
w, loss_res = model.fit(x_train_scale, y_train)
print(f"LogitRegModel 参数:\n{w}")
fig, ax = plt.subplots(figsize=(8, 4))
ax.plot(loss_res)
plt.xlabel("epoch")
plt.ylabel("loss")
plt.title("LogitRegModel Loss")
plt.show()
y_pred_probs, y_pred = model.predict(x_test_scale, w)
score = model.get_score(y_test, y_pred)
print(f"LogitRegModel 预测准确率:{score}")
# sklean
scale = StandardScaler(with_mean=True, with_std=True)
scale.fit(x_train)
x_train_scale = scale.transform(x_train)
x_test_scale = scale.transform(x_test)
clf = LogisticRegression(fit_intercept=True, solver="lbfgs", max_iter=5000, multi_class="ovr")
clf.fit(x_train_scale, y_train)
clf.coef_
clf.intercept_
y_pred = clf.predict(x_test_scale).reshape(-1, 1)
score = sum(y_test == y_pred) / len(y_test)
print(f"Sklearn 预测准确率:{score}")
LogitRegModel 参数:
[[0.18014117]
[1.63708775]
[1.64705508]
[1.5463744 ]
[1.61056801]]
LogitRegModel 预测准确率:[0.975]
array([[1.83258875, 1.93575921, 1.69735311, 1.87150825]])
array([0.39294385])
Sklearn 预测准确率:[0.975]
网友评论