iOS 11之Vision人脸检测

作者: 半笑半醉間 | 来源:发表于2017-10-12 17:44 被阅读718次

    大道如青天,我独不得出

    先来个图

    效果.png
    前言

    在上一篇iOS Core ML与Vision初识中,初步了解到了vision的作用,并在文章最后留了个疑问,就是类似下面的一些函数有什么用

    - (instancetype)initWithCIImage:(CIImage *)image options:(NSDictionary<VNImageOption, id> *)options;
    
    - (instancetype)initWithCVPixelBuffer:(CVPixelBufferRef)pixelBuffer options:(NSDictionary<VNImageOption, id> *)options;
    

    在查阅一些资料后,最终通过这些函数得到了如下的效果

    face.gif
    对,没错,这就是通过initWithCVPixelBuffer函数来实现的。当然vision的作用远不于此,还有如下的效果
    1、图像匹配(上篇文章中的效果)
    2、矩形检测
    3、二维码、条码检测
    4、目标跟踪
    5、文字检测
    6、人脸检测
    7、人脸面部特征检测
    由于对人脸识别比较感兴趣,所以这里就主要简单了解了下人脸部分,下面就针对人脸检测和面部检测写写
    Vision支持的图片类型

    通过查看VNRequestHandler.h文件,我们可以看到里面的所有初始化函数,通过这些初始化函数,我们可以了解到支持的类型有:
    1、CVPixelBufferRef
    2、CGImageRef
    3、CIImage
    4、NSURL
    5、NSData

    Vision使用

    在使用vision的时候,我们首先需要明确自己需要什么效果,然后根据想要的效果来选择不同的类,最后实现自己的效果
    1、需要一个RequestHandler,在创建RequestHandler的时候,需要一个合适的输入源,及图片类型
    2、需要一个Request,在创建Request的时候,也需要根据实际情况来选择,Request大概有如下这么些

    request.jpeg
    3、通过requestHandlerrequest联系起来,然后得到结果
    [handler performRequests:@[requset] error:&error];
    

    4、处理结果VNObservation,在VNRequestresults数组中,包含了VNObservation结果,VNObservation也分很多种,这和你Request的类型是相关联的

    Vision结果继承关系.png

    在完成上述步骤后,我们就可以根据结果来实现一些我们想要的效果

    人脸矩形检测

    这里我们需要用到VNDetectFaceRectanglesRequest

    requset = [[VNDetectFaceRectanglesRequest alloc] initWithCompletionHandler:completionHandler];
    

    在得到结果后,我们需要处理下坐标

        for (VNFaceObservation *faceObservation in observations) {
            //boundingBox
            CGRect transFrame = [self convertRect:faceObservation.boundingBox imageSize:image.size];
            [rects addObject:[NSValue valueWithCGRect:transFrame]];
        }
    
    // 转换Rect
    - (CGRect)convertRect:(CGRect)boundingBox imageSize:(CGSize)imageSize{
        CGFloat w = boundingBox.size.width * imageSize.width;
        CGFloat h = boundingBox.size.height * imageSize.height;
        CGFloat x = boundingBox.origin.x * imageSize.width;
        CGFloat y = imageSize.height * (1 - boundingBox.origin.y - boundingBox.size.height);//- (boundingBox.origin.y * imageSize.height) - h;
        return CGRectMake(x, y, w, h);
    }
    

    在返回结果中的boundingBox中的坐标,我们并不能立即使用,而是需要进行转换,因为这里是相对于image的一个比例,这里需要注意的是y坐标的转换,因为坐标系的y轴和UIViewy轴是相反的。
    最后就是通过返回的坐标进行矩形的绘制

    + (UIImage *)gl_drawImage:(UIImage *)image withRects:(NSArray *)rects
    {
        UIImage *newImage = nil;
        UIGraphicsBeginImageContextWithOptions(image.size, NO, [UIScreen mainScreen].scale);
        CGContextRef context = UIGraphicsGetCurrentContext();
        CGContextSetLineCap(context,kCGLineCapRound); //边缘样式
        CGContextSetLineJoin(context, kCGLineJoinRound);
        CGContextSetLineWidth(context,2); //线宽
        CGContextSetAllowsAntialiasing(context,YES); //打开抗锯齿
        CGContextSetStrokeColorWithColor(context, [UIColor redColor].CGColor);
        CGContextSetFillColorWithColor(context, [UIColor clearColor].CGColor);
        
        //绘制图片
        [image drawInRect:CGRectMake(0, 0,image.size.width, image.size.height)];
        CGContextBeginPath(context);
        for (int i = 0; i < rects.count; i ++) {
            CGRect rect = [rects[i] CGRectValue];
            CGPoint sPoints[4];//坐标点
            sPoints[0] = CGPointMake(rect.origin.x, rect.origin.y);//坐标1
            sPoints[1] = CGPointMake(rect.origin.x + rect.size.width, rect.origin.y);//坐标2
            sPoints[2] = CGPointMake(rect.origin.x + rect.size.width, rect.origin.y + rect.size.height);//坐标3
            sPoints[3] = CGPointMake(rect.origin.x , rect.origin.y + rect.size.height);
            
            CGContextAddLines(context, sPoints, 4);//添加线
            CGContextClosePath(context); //封闭
        }
        CGContextDrawPath(context, kCGPathFillStroke); //根据坐标绘制路径
        
        newImage = UIGraphicsGetImageFromCurrentImageContext();
        UIGraphicsEndImageContext();
        return newImage;
    }
    

    效果如下

    faceRect.jpg
    人脸特征识别

    这里我们需要用到VNDetectFaceLandmarksRequest

                requset = [[VNDetectFaceLandmarksRequest alloc] initWithCompletionHandler:completionHandler];
    
    

    处理结果

        for (VNFaceObservation *faceObservation in observations) {
            //boundingBox
            CGRect transFrame = [self convertRect:faceObservation.boundingBox imageSize:image.size];
            [rects addObject:[NSValue valueWithCGRect:transFrame]];
        }
        pointModel.faceRectPoints = rects;
        return pointModel;
    }
    
    - (GLDiscernPointModel *)handlerFaceLandMark:(NSArray *)observations image:(UIImage *)image
    {
        GLDiscernPointModel *pointModel = [[GLDiscernPointModel alloc] init];
        NSMutableArray *rects = @[].mutableCopy;
    
        for (VNFaceObservation *faceObservation in observations) {
            
            VNFaceLandmarks2D *faceLandMarks2D = faceObservation.landmarks;
            
            [self getKeysWithClass:[VNFaceLandmarks2D class] block:^(NSString *key) {
                if ([key isEqualToString:@"allPoints"]) {
                    return ;
                }
                VNFaceLandmarkRegion2D *faceLandMarkRegion2D = [faceLandMarks2D valueForKey:key];
                
                NSMutableArray *sPoints = [[NSMutableArray alloc] initWithCapacity:faceLandMarkRegion2D.pointCount];
                
                for (int i = 0; i < faceLandMarkRegion2D.pointCount; i ++) {
                    CGPoint point = faceLandMarkRegion2D.normalizedPoints[i];
                    
                    CGFloat rectWidth = image.size.width * faceObservation.boundingBox.size.width;
                    CGFloat rectHeight = image.size.height * faceObservation.boundingBox.size.height;
                    CGPoint p = CGPointMake(point.x * rectWidth + faceObservation.boundingBox.origin.x * image.size.width, faceObservation.boundingBox.origin.y * image.size.height + point.y * rectHeight);
                    [sPoints addObject:[NSValue valueWithCGPoint:p]];
                }
                
                [rects addObject:sPoints];
            }];
        }
    

    在这里,我们需要注意到landmarks这个属性,这是一个VNFaceLandmarks2D类型的对象,里面包含着许多面部特征的VNFaceLandmarkRegion2D对象,如:faceContourleftEyenose....分别表示面部轮廓、左眼、鼻子。这些对象中,又包含下面这么一个属性

    @property (readonly, assign, nullable) const CGPoint* normalizedPoints
    

    这是一个包含该面部特征的的数组,所以我们可以通过下面的方式取出里面的坐标

    CGPoint point = faceLandMarkRegion2D.normalizedPoints[i];
    

    当然这里面也存在坐标的转换,见上面代码
    最后也是画线,代码如下

    + (UIImage *)gl_drawImage:(UIImage *)image faceLandMarkPoints:(NSArray *)landMarkPoints
    {
        UIImage * newImage = image;
        for (NSMutableArray *points in landMarkPoints) {
            
            CGPoint sPoints [points.count];
            
            for (int i = 0;i <points.count;i++) {
                NSValue *pointValue = points[i];
                CGPoint point = pointValue.CGPointValue;
                sPoints[i] = point;
            }
            //画线
            UIGraphicsBeginImageContextWithOptions(newImage.size, NO, [UIScreen mainScreen].scale);
            CGContextRef context = UIGraphicsGetCurrentContext();
            CGContextSetLineCap(context,kCGLineCapRound); //边缘样式
            CGContextSetLineJoin(context, kCGLineJoinRound);
            CGContextSetLineWidth(context,2); //线宽
            CGContextSetAllowsAntialiasing(context,YES); //打开抗锯齿
            // 设置翻转
            CGContextTranslateCTM(context, 0, newImage.size.height);
            CGContextScaleCTM(context, 1.0, -1.0);
            
            CGContextSetStrokeColorWithColor(context, [UIColor redColor].CGColor);
            CGContextSetFillColorWithColor(context, [UIColor clearColor].CGColor);
            
            CGContextDrawImage(context, CGRectMake(0, 0,newImage.size.width,newImage.size.height), newImage.CGImage);
            
            CGContextBeginPath(context);
            CGContextAddLines(context, sPoints,points.count);//添加线
            CGContextClosePath(context); //封闭
            CGContextDrawPath(context, kCGPathFillStroke); //根据坐标绘制路径
            newImage = UIGraphicsGetImageFromCurrentImageContext();
            UIGraphicsEndImageContext();
        }
        return newImage;
    }
    
    

    效果如下

    faceLandmark.png
    动态人脸矩形检测

    要动态来检测,那么我们肯定需要通过相机来实时取出资源,然后再实现,所以我们这里选择了AVCapture,关于相机的初始化及使用方法这里就不在累赘了,我们直接上代码
    AVCaptureVideoDataOutputSampleBufferDelegate中,通过下面的方法

    - (void)captureOutput:(AVCaptureOutput *)output didOutputSampleBuffer:(CMSampleBufferRef)sampleBuffer fromConnection:(AVCaptureConnection *)connection
    
    

    我们可以进行这么一个转换

    CVPixelBufferRef cvpixeBufferRef = CMSampleBufferGetImageBuffer(sampleBuffer);
    

    然后通过

        VNImageRequestHandler *handler = [[VNImageRequestHandler alloc] initWithCVPixelBuffer:cvpixeBufferRef options:@{}];
    
    

    将相机返回的图片与request进行关联了。
    后续操作如下

                request = [[VNDetectFaceRectanglesRequest alloc] initWithCompletionHandler:^(VNRequest * _Nonnull request, NSError * _Nullable error) {
                    
                    NSLog(@" 打印信息:%lu",request.results.count);
                    NSArray *vnobservations = request.results;
                    
                    dispatch_async(dispatch_get_main_queue(), ^{
                        //先移除之前的矩形框
                        [self.rectLayers makeObjectsPerformSelector:@selector(removeFromSuperlayer)];
    
                        AVCaptureDevicePosition position = [[self.avInput device] position];
    
                        
                        
                        for (VNFaceObservation *faceObservation in vnobservations) {
                            //boundingBox
                            CGRect transFrame = [[GLTools sharedInstance] convertRect:faceObservation.boundingBox imageSize:self.view.frame.size];
                            //前置摄像头的时候 记得转换
                            if (position == AVCaptureDevicePositionFront){
                                transFrame.origin.x = self.view.frame.size.width - transFrame.origin.x - transFrame.size.width;
                            }
                            
                            CALayer *rectLayer = [CALayer layer];
                            rectLayer.frame = transFrame;
                            rectLayer.borderColor = [UIColor purpleColor].CGColor;
                            rectLayer.borderWidth = 2;
                            [self.view.layer addSublayer:rectLayer];
                            
                            [self.rectLayers addObject:rectLayer];
                        }
                    });
                }];
    

    在这里存在一个问题,就是摄像头分为前后摄像头,所以在前置摄像头和后置摄像头切换的时候,需要重新配置下

                //需要重新进行配置输出 特别是下面的输出方向
                AVCaptureConnection *captureConnection = [self.avOutput connectionWithMediaType:AVMediaTypeVideo];
                if ([captureConnection isVideoOrientationSupported]) {
                    [captureConnection setVideoOrientation:AVCaptureVideoOrientationPortrait];
                }
                // 视频稳定设置
                if ([captureConnection isVideoStabilizationSupported]) {
                    captureConnection.preferredVideoStabilizationMode = AVCaptureVideoStabilizationModeAuto;
                }
                // 设置输出图片方向
                captureConnection.videoOrientation = AVCaptureVideoOrientationPortrait;
    

    还有个问题就是在坐标转化的时候,前置摄像头的x轴和UIViewx轴也是相反的,所以这里也需要在进行一次转化

     transFrame.origin.x = self.view.frame.size.width - transFrame.origin.x - transFrame.size.width;
    
    

    效果如下

    动态1.gif
    动态添加场景

    关于动态添加场景,其实就像我们平时用的美颜相机那样,在适当的位置添加些帽子、眼镜等各种搞笑的图片。这里我们还是需要用到AVCapture,并且和动态添加矩形的方法类似,只是在request上和处理方式上不一样
    下面我们先看代码

                request = [[VNDetectFaceLandmarksRequest alloc] initWithCompletionHandler:^(VNRequest * _Nonnull request, NSError * _Nullable error) {
                    NSArray *vnobservations = request.results;
                    
                    
                    for (VNFaceObservation *faceObservation in vnobservations) {
                        
                        
                        VNFaceLandmarks2D *faceLandMarks2D = faceObservation.landmarks;
                        
                        VNFaceLandmarkRegion2D *leftEyefaceLandMarkRegion2D = faceLandMarks2D.leftEye;
                        VNFaceLandmarkRegion2D *rightEyefaceLandMarkRegion2D = faceLandMarks2D.rightEye;
                        
                        dispatch_async(dispatch_get_main_queue(), ^{
                            
    //                        //先移除之前的矩形框
    //                        [self.rectLayers makeObjectsPerformSelector:@selector(removeFromSuperlayer)];
    //
    //                        AVCaptureDevicePosition position = [[self.avInput device] position];
    //
    //                        CGRect transFrame = [[GLTools sharedInstance] convertRect:faceObservation.boundingBox imageSize:self.view.frame.size];
    //                        //前置摄像头的时候 记得转换
    //                        if (position == AVCaptureDevicePositionFront){
    //                            transFrame.origin.x = self.view.frame.size.width - transFrame.origin.x - transFrame.size.width;
    //                        }
    //
    //                        CALayer *rectLayer = [CALayer layer];
    //                        rectLayer.frame = transFrame;
    //                        rectLayer.borderColor = [UIColor purpleColor].CGColor;
    //                        rectLayer.borderWidth = 2;
    //                        [self.view.layer addSublayer:rectLayer];
    //
    //                        [self.rectLayers addObject:rectLayer];
                            
                            AVCaptureDevicePosition position = [[self.avInput device] position];
    
                            
                            CGPoint sPoints[leftEyefaceLandMarkRegion2D.pointCount + rightEyefaceLandMarkRegion2D.pointCount];
                            
                            NSMutableArray *pointXs = [[NSMutableArray alloc] init];
                            NSMutableArray *pointYs = [[NSMutableArray alloc] init];
                            
                            for (int i = 0; i < leftEyefaceLandMarkRegion2D.pointCount; i ++) {
                                CGPoint point = leftEyefaceLandMarkRegion2D.normalizedPoints[i];
                                
                                CGFloat rectWidth = self.view.bounds.size.width * faceObservation.boundingBox.size.width;
                                CGFloat rectHeight = self.view.bounds.size.height * faceObservation.boundingBox.size.height;
                                
                                CGFloat boundingBoxY = self.view.bounds.size.height * (1 - faceObservation.boundingBox.origin.y - faceObservation.boundingBox.size.height);
                                
                                CGPoint p = CGPointZero;
                                if (position == AVCaptureDevicePositionFront){
                                    
                                    CGFloat boundingX = self.view.frame.size.width - faceObservation.boundingBox.origin.x * self.view.bounds.size.width - rectWidth;
                                    
                                    p = CGPointMake(point.x * rectWidth + boundingX, boundingBoxY + (1-point.y) * rectHeight);
    
                                }else{
                                  p = CGPointMake(point.x * rectWidth + faceObservation.boundingBox.origin.x * self.view.bounds.size.width, boundingBoxY + (1-point.y) * rectHeight);
                                }
    
                                sPoints[i] = p;
                                
                                [pointXs addObject:[NSNumber numberWithFloat:p.x]];
                                [pointYs addObject:[NSNumber numberWithFloat:p.y]];
                            }
                            
                            for (int j = 0; j < rightEyefaceLandMarkRegion2D.pointCount; j ++) {
                                CGPoint point = rightEyefaceLandMarkRegion2D.normalizedPoints[j];
    
                                CGFloat rectWidth = self.view.bounds.size.width * faceObservation.boundingBox.size.width;
                                CGFloat rectHeight = self.view.bounds.size.height * faceObservation.boundingBox.size.height;
    
                                CGFloat boundingBoxY = self.view.bounds.size.height * (1 - faceObservation.boundingBox.origin.y - faceObservation.boundingBox.size.height);
    
                                CGPoint p = CGPointZero;
                                if (position == AVCaptureDevicePositionFront){
                                    
                                    CGFloat boundingX = self.view.frame.size.width - faceObservation.boundingBox.origin.x * self.view.bounds.size.width - rectWidth;
                                    
                                    p = CGPointMake(point.x * rectWidth + boundingX, boundingBoxY + (1-point.y) * rectHeight);
                                    
                                }else{
                                    p = CGPointMake(point.x * rectWidth + faceObservation.boundingBox.origin.x * self.view.bounds.size.width, boundingBoxY + (1-point.y) * rectHeight);
                                }
                                
                                sPoints[leftEyefaceLandMarkRegion2D.pointCount + j] = p;
                                
                                [pointXs addObject:[NSNumber numberWithFloat:p.x]];
                                [pointYs addObject:[NSNumber numberWithFloat:p.y]];
                            }
                            
    //                        for (UIView *view in self.view.subviews) {
    //                            if ([view isKindOfClass:[UIImageView class]]) {
    //                                [view removeFromSuperview];
    //                            }
    //                        }
    //
    //                        for (int i = 0; i < rightEyefaceLandMarkRegion2D.pointCount + leftEyefaceLandMarkRegion2D.pointCount; i++) {
    //                            CGFloat x = sPoints[i].x;
    //                            CGFloat y = sPoints[i].y;
    //                            UIImageView *view = [[UIImageView alloc] initWithFrame:CGRectMake(x, y, 2, 2)];
    //                            view.backgroundColor = [UIColor redColor];
    //                            [self.view addSubview:view];
    //                        }
                            
                            //排序 得到最小的x和最大的x
                            NSArray *sortPointXs = [pointXs sortedArrayWithOptions:NSSortStable usingComparator:
                                                    ^NSComparisonResult(id  _Nonnull obj1, id  _Nonnull obj2) {
                                                        int value1 = [obj1 floatValue];
                                                        int value2 = [obj2 floatValue];
                                                        if (value1 > value2) {
                                                            return NSOrderedDescending;
                                                        }else if (value1 == value2){
                                                            return NSOrderedSame;
                                                        }else{
                                                            return NSOrderedAscending;
                                                        }
                                                    }];
    
                            NSArray *sortPointYs = [pointYs sortedArrayWithOptions:NSSortStable usingComparator:
                                                    ^NSComparisonResult(id  _Nonnull obj1, id  _Nonnull obj2) {
                                                        int value1 = [obj1 floatValue];
                                                        int value2 = [obj2 floatValue];
                                                        if (value1 > value2) {
                                                            return NSOrderedDescending;
                                                        }else if (value1 == value2){
                                                            return NSOrderedSame;
                                                        }else{
                                                            return NSOrderedAscending;
                                                        }
                                                    }];
                            
                            UIImage *image =[UIImage imageNamed:@"eyes"];
                            CGFloat imageWidth = [sortPointXs.lastObject floatValue] - [sortPointXs.firstObject floatValue] + 40;
                            CGFloat imageHeight = (imageWidth * image.size.height)/image.size.width;
                            
                            self.glassesImageView.frame = CGRectMake([sortPointXs.firstObject floatValue]-20, [sortPointYs.firstObject floatValue]-5, imageWidth, imageHeight);
                        });
                    }
                }];
    

    由于时间关系,代码有点乱,将就将就

    先说说思路,我是想动态添加一个眼镜的,所以我必须先得到两个眼睛的位置,然后在计算出两个眼睛的宽高,最后适当的调整眼镜的大小,再动态的添加上去

    这里必须要说的一个问题,就是我在实现过程中遇到的---坐标

    首先是y坐标,如果还是按照静态图片的那种获取方式,那么得到的结果将会是完全相反的。

    faceObservation.boundingBox.origin.y * image.size.height + point.y * rectHeight
    

    这里我做了 一个假设,估计是由于摄像机成像的原因造成的,所以必须反其道而行,于是我如下改造了下

     CGFloat boundingBoxY = self.view.bounds.size.height * (1 - faceObservation.boundingBox.origin.y - faceObservation.boundingBox.size.height);
    
     p = CGPointMake(point.x * rectWidth + faceObservation.boundingBox.origin.x * self.view.bounds.size.width, boundingBoxY + (1-point.y) * rectHeight);
    

    从中可以看到,所有的point.y都用1减去了,这个试验的过程有点恼火,我还没怎么相通,若有知道的,希望可以告诉我下,当然我也会再研究研究。
    再说完y坐标后,就是x坐标了,x坐标在前置摄像头的时候一切正常,然而在切换成后置摄像头的时候,又反了。😔!心累啊,所以没办法,我就只要加判断,然后进行测试,有了如下代码

     CGFloat boundingX = self.view.frame.size.width - faceObservation.boundingBox.origin.x * self.view.bounds.size.width - rectWidth;
    

    最后终于大功告成!
    效果就是文章最顶的那个效果

    注意

    1、在使用过程中,我发现当检测图片的时候内存和cpu的消耗还是很高的,比如我的5s就成功的崩溃过.....
    2、图片方向是有要求的....

    - (instancetype)initWithCVPixelBuffer:(CVPixelBufferRef)pixelBuffer options:(NSDictionary<VNImageOption, id> *)options;
    
    /*!
     @brief initWithCVPixelBuffer:options creates a VNImageRequestHandler to be used for performing requests against the image passed in as buffer.
     
     @param pixelBuffer A CVPixelBuffer containing the image to be used for performing the requests. The content of the buffer cannot be modified for the lifetime of the VNImageRequestHandler.
     @param orientation The orientation of the image/buffer based on the EXIF specification. For details see kCGImagePropertyOrientation. The value has to be an integer from 1 to 8. This superceeds every other orientation information.
     @param options A dictionary with options specifying auxilary information for the buffer/image like VNImageOptionCameraIntrinsics
     */
    - (instancetype)initWithCVPixelBuffer:(CVPixelBufferRef)pixelBuffer orientation:(CGImagePropertyOrientation)orientation options:(NSDictionary<VNImageOption, id> *)options;
    
    

    通过对比上面两个函数,我们可以发现,多了一个CGImagePropertyOrientation类型的参数,没错,这就是指定传入图片的方向,如果指定了方向,而图片方向却不一致,那么恭喜你,检测不出来....这里我用的都是第一个方法,及没有参数,好像默认是up的。

    最后

    还是附上Demo,如果觉得还行的话,欢迎大家给个star!有什么问题,可以多多沟通

    相关文章

      网友评论

      • Lifeapprentice:关于y轴坐标的问题,大概是因为vision和opengl一样是以左下角为原点,其他的系统是以左上角为原点。
        半笑半醉間:@Lifeapprentice 是的

      本文标题:iOS 11之Vision人脸检测

      本文链接:https://www.haomeiwen.com/subject/jxznyxtx.html