TensorFlow的系统结构以C API为界,将整个系统分为「前端」和「后端」两个子系统。前端系统扮演了Client的角色,完成计算图的构造,通过转发Protobuf格式的GraphDef
给后端系统的Master,并启动计算图的执行过程。
最终,Master将图进行分裂,通过RegisterGraph
接口,将GraphDef
的子图片段注册到Worker上。因此,GraphDef
是描述计算图的知识模型,整个TensorFlow的计算过程都是围绕GraphDef
所展开的。
TensorFlow计算的单位是OP,它表示了某种抽象计算。本章首先阐述NodeDef, OpDef
的元数据模型,然后通过一个简单的例子,讲述元数据的流动过程。
元数据
OP表示某种抽象计算,它拥有0个或多个「输入/输出」,及其0个或多个「属性」。其中,输入/输出以Tensor的形式存在。
在系统实现中,OP的元数据使用Protobuf格式的OpDef
描述,实现前端与后端的数据交换,及其领域模型的统一。
OpDef定义
OpDef定义包括OP的名字,输入输出列表,属性列表,优化选项等。其中,属性常常用于描述输入/输出的类型,大小,默认值,约束,及其OP的其他特性。
OpDef表示OP命名
OP通过名字索引,因此必须保证OP的名字全局唯一。按照规范,OP的名字采用「驼峰」的命名风格,而Python前端则使用「小写下划线」的命名风格。后者也常常称为「OP构造器」,也是公开给用户的编程接口(API)。
另外,以下划线开头的OP被系统内部实现保留。例如,_Send, _Recv
,它们用于设备间通信的OP;_Source, _Sink
标识计算图的开始节点和结束节点。
输入/输出
OP的输入/输出以Tensor的形式存在,存在如下4种情况。
- 0个Tensor
- 零输入
- 零输出
- 1个Tensor
- 类型确定
- 类型不确定
- 多个Tensor
- 类型相同
- 类型不相同
相对于OP的属性,OP的输入是动态的,其值每次迭代(Step)时,都会发生变化。
属性
OP可以拥有「属性集」,用于描述OP输入输出的类型,大小,默认值,约束,及其其他OP的特征。其中,计算图构造时,属性值(AttrValue)被确定(由NodeDef携带,通过GraphDef传递给后端执行系统)。
也就是说,OP的「属性定义」与「属性值设置」是两个分离的过程。其中,属性定义在OP注册时确定,通过AttrDef描述;属性值设置在计算图构造时确定(OP添加到计算图时),由AttrValue描述。
相对于OP的输入,OP的属性则是静态的。OP属性值在计算图构造期间确定,包括输入输出的类型,大小,形状等,在计算迭代过程之中不会发生变化。
NodeDef定义
NodeDef表示OP索引
NodeDef
通过op
从OpRegistry
中索引OpDef
。
输入列表
通过input
指定节点的输入列表,它也是构造计算图最重要的知识所在。它存在2种情况,分别表示普通边与控制依赖边。
按照约定,为了解析方便,input
列表前面存储普通边,随后存储控制依赖边。
node:src_output
表示此边为普通边,承载Tensor的数据流。其中,node
为前驱节点的名称,src_output
为前驱节点输出边的索引。特殊地,当src_output
为0时,可以略去0
。
^node
表示该边为控制依赖边。其中,node
为前驱节点的名称。
设备规范
通过device
可以支持用户自定义设备分配方案。例如,
-
"@other/node"
: 与other/node
节点分配在同一设备; -
"/job:worker/replica:0/task:1/gpu:3"
:完整规范 -
"/job:worker/gpu:3"
:部分规范 -
""
:空规范
属性值列表
在计算图的构造期,OP属性值得以确定,包括输入/输出的类型,Shape等信息。OP的属性值承载于OpDef
的attr
属性列表之中。
符号编程
TensorFlow的计算过程是一个延迟计算,是一种典型的基于符号的编程范式。从计算时间轴看,计算过程基本分为2个阶段:
- 图构造期:负责计算图的构造;
- 图执行期:负责计算图的执行。
其中,在系统初始化时,系统实现对所有OP进行扫描注册,并保存于OpRegistry
之中。
注册OP
理论上,OP的注册发生在系统初始化阶段。后端系统,可以使用REGISTER_OP
实用宏注册OP。前端系统,也存在类似的OP注册机制。
使用REGISTER_OP
注册OP过程,实际上是一个REGISTER_OP
描述到OpDef
表示的翻译过程。OpDefBuilder
通过链式调用Input
, Output
, Attr
方法分别构造OP的输入、输出列表,及其属性列表。最后,通过调用Finalize
成员函数,经过解析字符串表示,将其翻译为OpDef
的内在表示,最后注册到OpRegistry
之中。
例如,REGISTER_OP("ZerosLike")
向系统注册了一个zeros_like
的OP,在运行时实现了OpDef
的翻译表达。
构造OP
在前端,用户使用OP构造器实现OP的构造,并将OP注册到计算图中。在计算图构造期间,OP的输入/输出的类型,Shape得以确定,OP属性值也得以确定。
计算图的构造过程,实际上就是GraphDef
定义过程。其中,OP的属性值承载于NodeDef
,计算图构造期间,NodeDef
的属性值得以确定。
在计算图执行启动时,通过调用Session.run
,将整个GraphDef
传递给后端,并启动计算图的执行。例如,存在如下的计算图构造过程:
tensor = tf.constant([1, 2], name="n1")
zeros = tf.zeros_like(tensor, name="n2")
ZerosLike
的上游节点为n1
,其src_output=0
输出边流入ZerosLike
。此时,ZerosLike
的属性T
的值自动推演为DT_INT32
,两个节点构造了一个简单的计算图。
执行OP
在计算图执行期间,输入由上游OP流入得以确定,根据特定设备类型,输入输出类型,多态选择合适的Kernel实现,并启动Kernel的计算过程。
例如,如果zeros_like
上游输入为[1, 2, 3, 4]
,进过zeros_like
的OP运算,输出为[0, 0, 0, 0]
。
网友评论
但是有一些疑問
1. `NodeDef`是前後端溝通共通的protobuf datatype
所以真正後端的執行是再把nodeDef及GraphDef 解析回在graph.h內定義的Node class & Graph Class?
2. master 把graphDef 透過RegisterGraph分給不同的workers,那在runtime裡面的 simple_placer 是這個分配的實作嗎?所以分配子圖,建立_send, _recv等NODE是在你提到的兩個階段(建構圖跟執行圖)中,在哪個階段執行呢?謝謝