美文网首页
Android Handler原理

Android Handler原理

作者: Just____ | 来源:发表于2020-11-23 22:01 被阅读0次

    Handler的作用

    Handler的核心作用用来解决多线程通信的问题

    核心成员

    成员 作用
    Handler XX
    Message XX
    MessageQueue XX
    Looper XX

    场景模拟

    假设有2个线程thread1和thread2,我们需要实现线程通信,大致代码如下

            threadl = new Thread("thread1") {
                @Override
                public void run() {
                    Log.d(TAG, "threadl run 创建handler1 ");
                    handler1 = new Thread1Handler(JustHandlerAct.this);
                }
            };
            thread2 = new Thread("thread2") {
                @Override
                public void run() {
    
                    Log.d(TAG, "thread2 run  延时2秒发消息给thread1的handler");
    
                    try {
                        Thread.sleep(2000);
                        Message msg = Message.obtain();
                        msg.what = 111;
                        handler1.sendMessage(msg);
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
            };
    
            threadl.start();
            thread2.start();
    

    我们启动2个线程,thread1负责创建handler1,等待thread2发送消息过来
    启动后报错:

     This is not main thread, and the caller should invoke Looper.prepare()  and Looper.loop()called byandroid.os.Handler.<init>:122 
    
    

    错误提示thread1不是主线程,使用Handler需要调用Looper.prepare() 和 Looper.loop() 方法
    在thread1中修改代码如下:

                threadl = new Thread("thread1") {
                @Override
                public void run() {
                    Log.d(TAG, "threadl run 创建handler1 ");
                    Looper.prepare();
                    handler1 = new Thread1Handler(JustHandlerAct.this);
                    Looper.loop();
                }
            };
    

    通过日志可以看到,正常收到了message

    2020-11-23 20:31:05.246 23347-23413/com.mj.just D/JustHandlerAct: threadl run 创建handler1 
    2020-11-23 20:31:05.246 23347-23414/com.mj.just D/JustHandlerAct: thread2 run  延时2秒发消息给thread1的handler
    2020-11-23 20:31:05.246 23347-23347/com.mj.just D/ActivityThread: add activity client record, r= ActivityRecord{848d728 token=android.os.BinderProxy@293d50d {com.mj.just/com.mj.just.handler.JustHandlerAct}} token= android.os.BinderProxy@293d50d
    2020-11-23 20:31:07.247 23347-23413/com.mj.just D/JustHandlerAct: mThread1Handler handleMessage what: 111, curThread: thread1
    
    

    那么Looper.prepare()和Looper.loop()做了什么事呢?我们在主线程创建的handler为什么可以不用调用这两个方法?

    主线程创建handler为什么可以不调用?

    答案不是不用调用,而是Android系统帮我们做了这一步而已。
    APP在启动的时候,会调用ActivityThread类的main方法,我们通过源码可以看到系统帮我们做了这个事

    public final class ActivityThread extends ClientTransactionHandler {
        public static void main(String[] args) {
            Looper.prepareMainLooper();
            if (sMainThreadHandler == null) {
                sMainThreadHandler = thread.getHandler();
            }
            Looper.loop();
        }
    }
    
    

    接下来从创建和通信两个维度来说一下handler的跨线程通信机制

    创建

    1. handler的创建

    首先看一下创建一个handler对象的时候,系统做了哪些事

    public class Handler {
            public Handler(@Nullable Callback callback, boolean async) {
                mLooper = Looper.myLooper();
                if (mLooper == null) {
                throw new RuntimeException(
                    "Can't create handler inside thread " + Thread.currentThread()
                            + " that has not called Looper.prepare()");
                }  
                mQueue = mLooper.mQueue;
                mCallback = callback;
                }
    }
    

    可以看到,handler在构造函数中从Looper类中获取了mLooper对象并持有,看一下Looper是如何提供的

    public class Looper{
        static final ThreadLocal<Looper> sThreadLocal = new ThreadLocal<Looper>();
        public static @Nullable Looper myLooper() {
            return sThreadLocal.get();
        }
    }
    

    这里用了ThreadLocal来为提供每个线程的Looper获取方式,不同线程之间的Looper相互独立,那么Looper又是如何产生的呢?其实就是Looper.prepare()方法

    public class Looper{
        private static void prepare(boolean quitAllowed) {
            if (sThreadLocal.get() != null) {
                throw new RuntimeException("Only one Looper may be created per thread");
            }
            sThreadLocal.set(new Looper(quitAllowed));
        }
    }
    

    我们看到,prepare方法其实就是给每个线程设置唯一的一个Looper对象

    从生产过程来看,大致可以有这么几点总结:

    1. 一个线程可以有多个handler,这个没有限制
    2. 一个线程只有一个Looper,如果一个线程中创建了多个handler,那么这些handler其实持有的是同一个Looper,线程和Looper的应对关系是靠ThreadLocal来实现的

    通信过程

    接下来看一下通信过程,我们一般通过handler.sendMessage()方法将消息发送给另一个线程。
    handler.sendMessage()方法最终会走到enqueueMessage方法:

    public class Handler {
         private boolean enqueueMessage(@NonNull MessageQueue queue, @NonNull Message msg, long uptimeMillis) {
            msg.target = this;
            msg.workSourceUid = ThreadLocalWorkSource.getUid();
            if (mAsynchronous) {
                msg.setAsynchronous(true);
            }
            return queue.enqueueMessage(msg, uptimeMillis);
        }
    }
    

    这里核心做了2件事:

    1. 将handler自身放进入message的target属性中
    2. 将msg交给了MessageQueue处理

    接下来看一下MessageQueue是如何处理的:

    public final class MessageQueue {
        boolean enqueueMessage(Message msg, long when) {
           synchronized (this) {
                ...
                msg.markInUse();
                msg.when = when;
                Message p = mMessages; //当前表头msg
                boolean needWake;
                if (p == null || when == 0 || when < p.when) {
                    // 如果当前表中没有积压msg 或者是 立即执行的msg 或者是 时间已过时的msg
                    msg.next = p;  
                    mMessages = msg;
                    needWake = mBlocked;
                } else {
                    // Inserted within the middle of the queue.  Usually we don't have to wake
                    // up the event queue unless there is a barrier at the head of the queue
                    // and the message is the earliest asynchronous message in the queue.
                    needWake = mBlocked && p.target == null && msg.isAsynchronous();
                    Message prev;
                    for (;;) {
                        prev = p;
                        p = p.next;
                        if (p == null || when < p.when) {
                            break;
                        }
                        if (needWake && p.isAsynchronous()) {
                            needWake = false;
                        }
                    }
                    msg.next = p; // invariant: p == prev.next
                    prev.next = msg;
                }
    
                // We can assume mPtr != 0 because mQuitting is false.
                if (needWake) {
                    nativeWake(mPtr);
                }
            }
        }
    }
    

    相关文章

      网友评论

          本文标题:Android Handler原理

          本文链接:https://www.haomeiwen.com/subject/kffzbktx.html