安装准备
安装包准备
- 源码编译
- 官网安装包
- imply组合套件
生产环境的Hadoop使用Java7, 官方安装包使用Java8,所以需要下载源码使用Java7重新编译。
安装使用 Druid 0.9.2 + imply 2.0.0
-
编译
git clone https://github.com/druid-io/druid.git # 下载源码 cd druid git checkout 0.9.2 # 切换0.9.2分支 mvn clean package # 打包
打包后会生成 distribution 目录
druid 安装包目录为:distribution/target
[imply@85-195-119-23 target]$ ll distribution/target/ total 924 drwxrwxr-x 2 imply imply 6 Aug 1 07:49 archive-tmp drwxrwxr-x 9 imply imply 141 Aug 1 07:59 druid-0.9.2.1-SNAPSHOT drwxrwxr-x 16 imply imply 4096 Aug 1 07:48 extensions drwxrwxr-x 3 imply imply 42 Aug 1 07:49 generated-resources drwxrwxr-x 3 imply imply 27 Aug 1 07:48 hadoop-dependencies -rw-rw-r-- 1 imply imply 941721 Aug 1 07:49 mysql-metadata-storage-0.9.2.1-SNAPSHOT.tar
-
替换
imply目录结构
[imply@85-195-119-23 imply-2.2.3]$ ll total 6 drwxr-xr-x 2 imply imply 4096 Jul 31 05:35 bin # 运行相关组件的脚本程序 drwxr-xr-x 7 imply imply 78 Jul 26 08:59 conf # 生产环境集群配置文件 drwxr-xr-x 6 imply imply 61 Jul 31 05:35 conf-quickstart # 单机测试版配置文件 drwxr-xr-x 6 imply imply 80 Jul 31 05:35 dist # 相关软件包() drwxr-xr-x 2 imply imply 226 May 26 18:23 quickstart drwxrwxr-x 5 imply imply 40 Jul 31 05:42 var
druid-0.9.2.1-SNAPSHOT 替换 imply-2.0.0/dist/druid目录
[root@85-195-119-23 imply-2.0.0]# ll dist/ total 142380 lrwxrwxrwx 1 imply imply 22 Aug 1 08:05 druid -> druid-0.9.2.1-SNAPSHOT drwxrwxr-x 9 imply imply 141 Aug 1 08:04 druid-0.9.2.1-SNAPSHOT -rw-rw-r-- 1 imply imply 145790825 Aug 1 07:49 druid-0.9.2.1-SNAPSHOT-bin.tar.gz drwxr-xr-x 9 imply imply 141 Dec 1 2016 druid-bak drwxr-xr-x 6 imply imply 84 Dec 1 2016 pivot drwxr-xr-x 5 imply imply 40 Dec 1 2016 tranquility -rw-r--r-- 1 imply imply 6 Dec 1 2016 VERSION.txt drwxr-xr-x 3 imply imply 44 Dec 1 2016 zk
安装环境
- Java7以上版本(推荐Java8,最新版本Druid要求Java8及以上版本)
- Nodejs 4.x以上版本
- Linux或Unix系统
- 4GB以上内存
外部依赖
- Deep Storage(数据文件存储库):负责存储和加载Druid的数据文件(Segment)
- MetaData Storage(元数据库):负责存储和管理整个系统的配置记录信息
- Zookeeper(集群状态管理):负责管理并同步各个节点的状态信息,以及新增节点时的服务发现功能
规划与部署
druid 采用分布式设计,不同类型的节点各司其职,故在实际部署集群环境走了需要对各类节点进行统一规划,从功能上分为三个部分。
- Master: 管理节点,包含协调节点和统治节点,负责管理数据写入及容错相关处理;
- Data: 数据节点,包含历史节点和中间管理者,负责数据写入处理,历史数据的加载与查询;
- Query: 查询节点,包含查询节点和Pivot Web界面,负责提供数据查询接口和Web交互查询功能。
实际部署,至少部署两个管理节点互备容错;由于Druid支持横向扩展,考虑机器资源有限,可以将管理节点和查询节点混合部署在同一台物理机上,同时为了加快热点数据的查询,可以考虑加上历史节点,利用分层特性,把小部分热点数据源放在管理节点所在的机器上的历史节点。
机器选择上,管理节点和历史节点考虑用多核大内存机器,数据节点涉及历史数据和数据的本地缓存,需要更大的磁盘空间。推荐使用ssd。
管理节点配置文件:
cp conf/supervise/master-no-zk.conf conf/supervise/master-with-query.conf
vim conf/supervise/master-with-query.conf
:verify bin/verify-java
:verify bin/verify-node
broker bin/run-druid broker conf
historical bin/run-druid historical conf
pivot bin/run-pivot conf
coordinator bin/run-druid coordinator conf
!p80 overlord bin/run-druid overlord conf
运行命令:
nohup ./bin/supervise -c conf/supervise/master-with-query.conf > master-with-query.log &
数据节点配置文件
vim conf/supervise/data.conf
:verify bin/verify-java
historical bin/run-druid historical conf
middleManager bin/run-druid middleManager conf
# Uncomment to use Tranquility Server
#!p95 tranquility-server bin/tranquility server -configFile conf/tranquility/server.json
# Uncomment to use Tranquility Kafka
#!p95 tranquility-kafka bin/tranquility kafka -configFile conf/tranquility/kafka.json
运行命令
nohup ./bin/supervise -c conf/supervise/data.conf > data.log &
基本配置
基础依赖配置
配置文件为:conf/druid/_common/common.runtime.properties
-
Zookeeper
druid.zk.service.host=${Zookeepr 集群地址} druid.zk.paths.base=/druid
-
Metadata Storage
# For MySQL: druid.extensions.loadList=["mysql-metadata-storage"] druid.metadata.storage.type=mysql druid.metadata.storage.connector.connectURI=jdbc:mysql://{IP:PORT}/druid druid.metadata.storage.connector.user=${USER} druid.metadata.storage.connector.password=${PASSWORD} # For PostgreSQL: #druid.metadata.storage.type=postgresql #druid.metadata.storage.connector.connectURI=jdbc:postgresql://db.example.com:5432/druid #druid.metadata.storage.connector.user=... #druid.metadata.storage.connector.password=.....
-
Deep Storage
# For HDFS: druid.extensions.loadList=["druid-hdfs-storage"] druid.storage.type=hdfs druid.storage.storageDirectory=hdfs://${namenode:port}/druid/segments # For HDFS: druid.indexer.logs.type=hdfs druid.indexer.logs.directory=hdfs://ip:port/druid/indexing-logs
注:采用HDFS作为Deep Storage时,离线批量导入数据任务会利用MapReduce加速写入处理,因此需要将生产环境Hadoop对应客户端配置文件core-site.xml,hdfs-site.xml,yarn-site.xml,mapred-site.xml放到conf/druid/_common目录下。
数据节点配置调优
查询节点配置调优
节点配置
节点规划
机器 | IP | 节点 |
---|---|---|
druid-01 | 10.1.12.76 | master节点、query节点、pivot |
druid-02 | 10.1.12.77 | data节点 |
druid-03 | 10.1.12.78 | master节点、query节点 |
druid-04 | 10.1.12.79 | data节点 |
druid-05 | 10.1.12.80 | data节点 |
全局Common配置
#
# Extensions
#
druid.extensions.directory=dist/druid/extensions
druid.extensions.hadoopDependenciesDir=dist/druid/hadoop-dependencies
druid.extensions.loadList=["druid-histogram","druid-datasketches","mysql-metadata-storage","druid-hdfs-storage"]
#
# Logging
#
# Log all runtime properties on startup. Disable to avoid logging properties on startup:
druid.startup.logging.logProperties=true
#
# Zookeeper
#
druid.zk.service.host=datanode1:2181,datanode2:2181,datanode3:2181
druid.zk.paths.base=/druid
#
# Metadata storage
#
# For Derby server on your Druid Coordinator (only viable in a cluster with a single Coordinator, no fail-over):
#druid.metadata.storage.type=derby
#druid.metadata.storage.connector.connectURI=jdbc:derby://master.example.com:1527/var/druid/metadata.db;create=true
#druid.metadata.storage.connector.host=master.example.com
#druid.metadata.storage.connector.port=1527
# For MySQL:
druid.metadata.storage.type=mysql
druid.metadata.storage.connector.connectURI=jdbc:mysql://druid-01:3306/druid?characterEncoding=utf8&useSSL=false&serverTimezone=UTC
druid.metadata.storage.connector.user=username
druid.metadata.storage.connector.password=password
# For PostgreSQL:
#druid.metadata.storage.type=postgresql
#druid.metadata.storage.connector.connectURI=jdbc:postgresql://db.example.com:5432/druid
#druid.metadata.storage.connector.user=...
#druid.metadata.storage.connector.password=...
#
# Deep storage
#
# For local disk (only viable in a cluster if this is a network mount):
#druid.storage.type=local
#druid.storage.storageDirectory=var/druid/segments
# For HDFS:
druid.storage.type=hdfs
druid.storage.storageDirectory=hdfs://ip:port/druid/segments
# For S3:
#druid.storage.type=s3
#druid.storage.bucket=your-bucket
#druid.storage.baseKey=druid/segments
#druid.s3.accessKey=...
#druid.s3.secretKey=...
#
# Indexing service logs
#
# For local disk (only viable in a cluster if this is a network mount):
#druid.indexer.logs.type=file
#druid.indexer.logs.directory=var/druid/indexing-logs
# For HDFS:
druid.indexer.logs.type=hdfs
druid.indexer.logs.directory=hdfs://ip:port/druid/indexing-logs
# For S3:
#druid.indexer.logs.type=s3
#druid.indexer.logs.s3Bucket=your-bucket
#druid.indexer.logs.s3Prefix=druid/indexing-logs
#
# Service discovery
#
druid.selectors.indexing.serviceName=druid/overlord
druid.selectors.coordinator.serviceName=druid/coordinator
#
# Monitoring
#
druid.monitoring.monitors=["com.metamx.metrics.JvmMonitor"]
druid.emitter=logging
druid.emitter.logging.logLevel=debug
Master机器配置
Master机器两台,作为管理节点相互作为HA支撑,同时承担部分数据查询
- 协调节点
jvm.config
-server
-Xms3g
-Xmx3g
-Duser.timezone=UTC
-Dfile.encoding=UTF-8
-Djava.io.tmpdir=var/tmp
-Djava.util.logging.manager=org.apache.logging.log4j.jul.LogManager
-Dderby.stream.error.file=var/druid/derby.log
runtime.properties
druid.host=druid-01
druid.service=druid/coordinator
druid.port=8081
druid.coordinator.startDelay=PT30S
druid.coordinator.period=PT30S
- 统治节点
jvm.config
-server
-Xms3g
-Xmx3g
-Duser.timezone=UTC
-Dfile.encoding=UTF-8
-Djava.io.tmpdir=var/tmp
-Djava.util.logging.manager=org.apache.logging.log4j.jul.LogManager
runtime.properties
druid.host=druid-01
druid.service=druid/overlord
druid.port=8090
druid.indexer.queue.startDelay=PT30S
druid.indexer.runner.type=remote
druid.indexer.storage.type=metadata
- 查询节点
jvm.config
-server
-Xms12g
-Xmx12g
-XX:MaxDirectMemorySize=3072m
-Duser.timezone=UTC
-Dfile.encoding=UTF-8
-Djava.io.tmpdir=var/tmp
-Djava.util.logging.manager=org.apache.logging.log4j.jul.LogManager
runtime.properties
druid.host=druid-01
druid.service=druid/broker
druid.port=8082
# HTTP server threads
druid.broker.http.numConnections=5
druid.server.http.numThreads=25
# Processing threads and buffers
druid.processing.buffer.sizeBytes=268435456
druid.processing.numMergeBuffers=2
druid.processing.numThreads=3
druid.processing.tmpDir=var/druid/processing
# Query cache disabled -- push down caching and merging instead
druid.broker.cache.useCache=false
druid.broker.cache.populateCache=false
# SQL
druid.sql.enable=true
- 历史节点
jvm.config
-server
-Xms4g
-Xmx4g
-XX:MaxDirectMemorySize=3072m
-Duser.timezone=UTC
-Dfile.encoding=UTF-8
-Djava.io.tmpdir=var/tmp
-Djava.util.logging.manager=org.apache.logging.log4j.jul.LogManager
runtime.properties
druid.host=druid-01
druid.service=druid/historical
druid.port=8083
# HTTP server threads
druid.server.http.numThreads=20
# Processing threads and buffers
druid.processing.buffer.sizeBytes=268435456
druid.processing.numMergeBuffers=2
druid.processing.numThreads=3
druid.processing.tmpDir=var/druid/processing
# Segment storage
druid.segmentCache.locations=[{"path":"var/druid/segment-cache","maxSize"\:130000000000}]
druid.server.maxSize=130000000000
# Query cache
druid.historical.cache.useCache=true
druid.historical.cache.populateCache=true
druid.cache.type=caffeine
druid.cache.sizeInBytes=2000000000
Data机器配置
Data机器3台,作为数据节点负责数据处理,Shared nothing 架构。
- 历史节点
jvm.config
-server
-Xms4g
-Xmx4g
-XX:MaxDirectMemorySize=3072m
-Duser.timezone=UTC
-Dfile.encoding=UTF-8
-Djava.io.tmpdir=var/tmp
-Djava.util.logging.manager=org.apache.logging.log4j.jul.LogManager
runtime.properties
druid.host=druid-01
druid.service=druid/historical
druid.port=8083
# HTTP server threads
druid.server.http.numThreads=20
# Processing threads and buffers
druid.processing.buffer.sizeBytes=268435456
druid.processing.numMergeBuffers=2
druid.processing.numThreads=3
druid.processing.tmpDir=var/druid/processing
# Segment storage
druid.segmentCache.locations=[{"path":"var/druid/segment-cache","maxSize"\:130000000000}]
druid.server.maxSize=130000000000
# Query cache
druid.historical.cache.useCache=true
druid.historical.cache.populateCache=true
druid.cache.type=caffeine
druid.cache.sizeInBytes=2000000000
- 中间管理者
jvm.config
-server
-Xms64m
-Xmx64m
-Duser.timezone=UTC
-Dfile.encoding=UTF-8
-Djava.io.tmpdir=var/tmp
-Djava.util.logging.manager=org.apache.logging.log4j.jul.LogManager
runtime.properties
druid.host=druid-02
druid.service=druid/middlemanager
druid.port=8091
# Number of tasks per middleManager
druid.worker.capacity=3
# Task launch parameters
druid.indexer.runner.javaOpts=-server -Xmx2g -Duser.timezone=UTC -Dfile.encoding=UTF-8 -Djava.util.logging.manager=org.apache.logging.log4j.jul.LogManager
druid.indexer.task.baseTaskDir=var/druid/task
druid.indexer.task.restoreTasksOnRestart=true
# HTTP server threads
druid.server.http.numThreads=40
# Processing threads and buffers
druid.processing.buffer.sizeBytes=268435456
druid.processing.numMergeBuffers=2
druid.processing.numThreads=2
druid.processing.tmpDir=var/druid/processing
# Hadoop indexing
druid.indexer.task.hadoopWorkingPath=var/druid/hadoop-tmp
druid.indexer.task.defaultHadoopCoordinates=["org.apache.hadoop:hadoop-client:2.3.0"]
网友评论