美文网首页
tensorflow rnn

tensorflow rnn

作者: Do_More | 来源:发表于2017-12-06 14:16 被阅读0次
import tensorflow as tf
import numpy as np

from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets('/tmp/', one_hot=True)

chunk_size = 28
chunk_n = 28

rnn_size = 256

n_output_layer = 10

X = tf.placeholder('float', [None, chunk_n, chunk_size])
Y = tf.placeholder('float')

def recurrent_neural_network(data):
    layer = {
        'w_': tf.Variable(tf.random_normal([rnn_size, n_output_layer])),
        'b_': tf.Variable(tf.random_normal([n_output_layer]))
    }
    lstm_cell = tf.nn.rnn_cell.BasicLSTMCell(rnn_size)

    data = tf.transpose(data, [1, 0, 2])
    data = tf.reshape(data, [-1, chunk_size])
    data = tf.split(data, chunk_n, 0)
    ouputs, status = tf.contrib.rnn.static_rnn(lstm_cell, data, dtype=tf.float32)

    ouput = tf.add(tf.matmul(ouputs[-1], layer['w_']), layer['b_'])
    return ouput

batch_size = 100

def train_neural_network(X, Y):
  predict = recurrent_neural_network(X)
  cost_func = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=predict, labels=Y))
  optimizer = tf.train.AdamOptimizer().minimize(cost_func)

  epochs = 13
  with tf.Session() as session:
    session.run(tf.global_variables_initializer())
    epoch_loss = 0
    for epoch in range(epochs):
      for i in range(int(mnist.train.num_examples/batch_size)):
        x, y = mnist.train.next_batch(batch_size)
        x = x.reshape([batch_size, chunk_n, chunk_size])
        _, c = session.run([optimizer, cost_func], feed_dict={X: x, Y: y})
        epoch_loss += chunk_n
      print(epoch, ' : ', epoch_loss)

    correct = tf.equal(tf.argmax(predict, 1), tf.argmax(Y, 1))
    accuracy = tf.reduce_mean(tf.cast(correct, 'float'))
    print('accuracy: ', accuracy.eval({
      X: mnist.test.images.reshape(-1, chunk_n, chunk_size),
      Y: mnist.test.labels
    }))

train_neural_network(X, Y)

相关文章

网友评论

      本文标题:tensorflow rnn

      本文链接:https://www.haomeiwen.com/subject/khokixtx.html