在Black-Scholes期权定价模型中,不能直接观察到的参数只有股票价格的波动率。波动率可以由历史数据进行估计,这是历史波动率。隐含波动率也是交易员非常关心的,隐含波动率是期权的市场价格中所包含的波动率,即由期权价格和期权定价公式反推的波动率。隐含波动率和历史波动率作比较,可以指导投资者的操作。投资者可以直接买卖波动率,或者参考波动率确定买卖时机。
我们可以通过期权定价公式写出隐含波动率的方程,但是直接解方程非常困难,因为这个方程不存在闭合解。既然是用程序求解,当然可以用计算机求方程解的神器-数值计算。牛顿迭代法和二分法是求隐含波动率常用的两个方法。相比二分法,牛顿迭代法是更通用的近似求解方程的方法。
由于国内没有场内个股期权,曲曲菜用上证50ETF期权做分析。首先从新浪财经的网站获得期权的行情信息,并存入csv文件。到期时间我选了16天,51天,76天三种,分别存成三个文件。
新浪财经的期权行情数据(16天到期) 期权数据文件(16天到期)然后就可以计算隐含波动率了,计算隐含波动率的python程序如下。
一.BSM模型
1.引入所用到的库
2. 定价公式的程序实现
二.牛顿迭代法
1.介绍
设r是f(x)=0的根,选取x0作为r的初始近似值,过点(x0,f(x0))做曲线y=f(x)
的切线L ,
,则L与x轴交点的横坐标
,称x1为r的一次近似值。过点(x1,f(x1))做曲线y=f(x)的切线,并求该切线与x轴交点的横坐标
,称x2为r的二次近似值。重复以上程,得r的近似值序列,其中,
称为r的n+1次近似值,上式称为牛顿迭代公式。
隐含波动率的计算中,f(x)是BSM定价公式得到的价格和实际价格的差,x是隐含波动率,f(x)中只有隐含波动率是未知数,其他是已知数。由定义可知,x的导数是vega。
2.程序实现
三.二分法
1.介绍
二分法求根的思想和二分查找相同,只不过二分查找比较的是未知数和目标,而二分法比较的是未知数的函数和目标函数值。二分法求根需要知道根所在的区间,将上下限分别设为区间的上下边界点,初始值设为上下限的均值。通过迭代不断更新并逼近方程的解。
2.程序实现
四.读取行情数据并初始化参数
1.程序实现
五.计算隐含波动率
1.程序实现
2.隐含波动率打印结果
imp_vol_newton_16:[0.3638689603157307, 0.3647065048442553, 0.33796965226626546, 0.3087508280418194, 0.29010352112059345, 0.27704783086782625, 0.2678504434116786, 0.27958298121452063, 0.2815159982582914, 0.2892477867510613, 0.2948778490238011, 0.3001603015476018, 0.3079952199130588]
imp_vol_dichotomy_16:[0.3638690114021301, 0.3647065758705139, 0.33796969056129456, 0.3087505102157593, 0.290103480219841, 0.2770475149154663, 0.2678511142730713, 0.2795829623937607, 0.28151603043079376, 0.2892477214336395, 0.29487812519073486, 0.3001604676246643, 0.30799537897109985]
-------------------------------------------------------------------------------------------------------------------------------------
imp_vol_newton_51:[0.2663830055838, 0.2623349770104388, 0.25886692974504383, 0.25514765329363565, 0.25388257585478174, 0.25112748137747243, 0.25311127192458244, 0.25282431711916714, 0.25334527303228827]
imp_vol_dichotomy_51:[0.26638298481702805, 0.26233501732349396, 0.25886694341897964, 0.2551477253437042, 0.25388259440660477, 0.2511274963617325, 0.25311121344566345, 0.2528250217437744, 0.25334523618221283]
-------------------------------------------------------------------------------------------------------------------------------------imp_vol_newton_79:[0.30525607059637466, 0.2900199629942286, 0.29426758619557364, 0.26917014044939297, 0.2708636644397624, 0.25993171220348904, 0.2610946078237793, 0.2527101923035752, 0.2523987108427234, 0.24752459839396573, 0.2483057133362068, 0.24353321749378323, 0.24308705976680656, 0.23851008170784155, 0.2406859629151288, 0.24016117575185575]
imp_vol_dichotomy_79:[0.30525608360767365, 0.29002001881599426, 0.29426760971546173, 0.2691701799631119, 0.2708636373281479, 0.25993166863918304, 0.261094618588686, 0.2527102008461952, 0.25239837169647217, 0.2475244402885437, 0.24830570071935654, 0.2435331791639328, 0.243087038397789, 0.2385101616382599, 0.24068592488765717, 0.24016119539737701]
-------------------------------------------------------------------------------------------------------------------------------------
六.绘制波动率曲线
1.绘制牛顿法曲线的程序实现
2.上一步绘制出的图形
3.绘制二分法曲线的程序实现
4.上一步绘制出的图形
从图形可以看出,51天到期和79天到期的隐含波动率随执行价格的递增,呈现递减趋势,这就是股票期权的波动率微笑(volatility smile)。16天到期的隐含波动率是随执行价格递增先是递减,至标的价格附近后,开始缓慢递增,这也是波动率微笑,虽然对股票期权来说,这个微笑不是很标准。从图形还可以看出,距离到期时间越近,隐含波动率越大。
波动率微笑反映了隐含波动率和执行价格的关系。外汇期权的波动率是对称的微笑, 股票期权的波动率微笑是不对称的,更准确的叫法是volatility skew(波动率倾斜),或者volatility smirk(波动率假笑)。反映到图形上,就是左高有低,隐含波动率随执行价格的递增而递减。
股票期权波动率微笑的原因,常见的解释是杠杆效应和恐慌情绪,但是也有人认为这就是一个市场的反应,没有特别的原因。(如需要本文的源代码和数据文件可以联系我)
代码在我的GitHub:https://github.com/ququcai/volatility_smile
参考资料
[1] 约翰 赫尔.期权、期货及其他衍生品
[2] Yves Hilpsch. Python for Finance: Analyze Big Financial Data
本文作者:曲曲菜(微信公众号:曲曲菜)
知乎专栏:AI和金融模型
原创作品,未标明作者不得转载。
作者公众号
网友评论