基因敲除技术简介
CRISPR/Cas(Clustered Regularly Interspaced Short Palindromic Repeats/ Cas)系统是目前被广泛运用的基因编辑系统,其原理是由CRISPR转录产生的gRNA介导Cas核酸酶靶向目标序列,对序列进行切割。其中最常用的是靶向DNA的CRISPR/Cas9系统,此系统是由II类CRISPR/Cas系统改造而来,能够在植物、细菌、酵母、鱼类及哺乳动物等多种细胞中,进行有效的靶向编辑,具有操作简易、效率高、以及作用靶位点多等优势。
CRISPR/Cas9系统中sgRNA(short guide RNA)识别并结合目标基因的靶向序列,引导Cas9对结合位点进行剪切,产生DNA双链断裂(double-strand break, DSB),机体自身通过非同源重组(non-homologous end joining,NHEJ)的方式修复DSB,参与修复的蛋白经常会在DNA末端插入或删除几个碱基,修复后的基因由于产生突变而导致功能丧失,从而实现机体内的基因敲除。
技术原理与流程
基因敲除技术优势
Cas9X使用新的实验模型将细胞系的敲除效率进行大幅的提升
1. 使用Cas9蛋白和gRNA的复合物直接进行电转,提高效率的同时减少非特异的切割;(目前报道脱靶率最低的方法)
2. 使用高效的电转设备,具备更高的电转效率和细胞存活率;
3. 使用更先进的单克隆稀释设备和方法,大幅提高阳性率;(提高2倍)
4. 持续建库:我们也将提供更多的标准细胞株和基因编辑细胞株产品供科研工作者选择。
5. 大片段敲除,可以通过PCR快速鉴定;
6. 非移码方式敲除,可以保证细胞系做基因回补无需考虑突变修饰的问题。
通过优化,Cas9X在细胞系基因敲除的效率是传统质粒法的数倍(3-5倍)结合ClonePlus技术,可以将效率提升10-15倍,也可以针对很多之前难以实现敲除的细胞株进行基因敲除操作,而且周期比病毒法更短。最快可以5周内拿到基因敲除的细胞!
基因敲除技术的应用及前景
1. 建立生物模型。在基因功能,代谢途径等研究中模型生物的建立非常重要。基因敲除技术就常常用于建立某种特定基因缺失的生物模型,从而进行相关的研究。这些模型可以是细胞,也可以是完整的动植物或微生物个体。最常见的是小鼠,家兔、猪、线虫、酵母和拟南芥等的基因敲除模型也常见于报道。
2. 疾病的分子机理研究和疾病的基因治疗。通过基因敲除技术可以确定特定基因的性质以及研究它对机体的影响。这无论是对了解疾病的根源或者是寻找基因治疗的靶目标都有重大的意义。
3. 提供廉价的异种移植器官。众所周知,器官来源稀少往往是人体器官移植的一大制约因素,而大量廉价的异种生物如猪等的器官却不能用于人体。这是因为异源生物的基因会产生一些能引起人体强烈免疫排斥的异源分子,如果能将产生这些异源分子的基因敲除,那么动物的器官将能用于人体的疾病治疗,这将为患者带来具大的福音。如:PPL Therapeutics 公司于1999 年已成功地在猪的体细胞中用基因敲除技术敲除了α-1,3GT 基因。使每只猪都缺乏产生a1-3半乳糖基转移酶的基因的2个拷贝。这些酶在细胞表面产生一种糖分子,人体的免疫系统可以立即辨认出这种糖分子为异源性,从而引发超急性免疫排斥反应。在缺乏这种酶的情况下,超急性排斥反应即不会再发生。
4. 免疫学中的应用。同异源器官移植相似,异源的抗体用于人体时或多或少会有一定的免疫排斥,使得人用抗体类药物的生产和应用受阻。而如果将动物免疫分子基因敲除,换以人的相应基因,那么将产生人的抗体,从而解决人源抗体的生产问题。
5. 改造生物、培育新的生物品种。细菌的基因工程技术是本世纪分子生物学史上的一个重大突破,而基因敲除技术则可能是遗传工程中的另一重大飞跃。它为定向改造生物,培育新型生物提供了重要的技术支持。
发表的高分文献
1. Cas9X®基因编辑服务:影响因子为38.12
Ma B, Ju A, Zhang S, et al. Albumosomes formed by cytoplasmic pre-folding albumin maintain mitochondrial homeostasis and inhibit nonalcoholic fatty liver disease[J]. Signal Transduction and Targeted Therapy, 2023, 8(1): 229.
2. Cas9X®基因编辑服务:影响因子为23.65
Wu W, Pu Y, Gao S, et al. Bacterial Metabolism-Initiated Nanocatalytic Tumor Immunotherapy[J]. Nano-Micro Letters, 2022, 14(1): 1-21.
3.Cas9X®基因编辑服务:影响因子为17.694
Bu, J., Zhang, Y., Wu, S. et al. KK-LC-1 as a therapeutic target to eliminate ALDH+ stem cells in triple negative breast cancer. Nat Commun 14, 2602 (2023).
4. Cas9X®基因编辑服务:影响因子为8.322
Li W, Ali T, Zheng C, et al. Fluoxetine regulates eEF2 activity (phosphorylation) via HDAC1 inhibitory mechanism in an LPS-induced mouse model of depression[J]. Journal of neuroinflammation, 2021, 18(1): 1-19.
5. Cas9X®基因编辑服务:影响因子为15.992
Li W, Ali T, Zheng C, et al. Anti-depressive-like behaviors of APN KO mice involve Trkb/BDNF signaling related neuroinflammatory changes[J]. Molecular Psychiatry, 2022, 27(2): 1047-1058.
6. Cas9X®基因编辑服务:影响因子为5.59
Xiao P, Chen J, Zeng Q, et al. UNC5B Overexpression Alleviates Peripheral Neuropathic Pain by Stimulating Netrin-1-Dependent Autophagic Flux in Schwann Cells[J]. Molecular Neurobiology, 2022: 1-15.
网友评论