image.png题目一:求斐波那契数列的第n项。
写一个函数,输入n,求斐波那契(Fibonacci)数列的第n 项。斐波那契数列的定义如下:
- 递归。时间效率很低,不推荐。
long long Fibonacci(unsigned int n) {
if (n <= 0) {
return 0;
}
if (n == 1) {
return 1;
}
return Fibonacci(n - 1) + Fibonacci(n - 2);
}
- 循环。把递归的算法用循环实现,极大地提高了时间效率。时间复杂度是O(n),推荐。
long long Fibonacci(unsigned int n) {
int result[2] = {0, 1};
if (n < 2) {
return result[n];
}
long long fibNMinusOne = 1;
long long fibNMinusTwo = 0;
long long fibN = 0;
for (unsigned int i = 2; i <= n; ++i) {
fibN = fibNMinusOne + fibNMinusTwo;
fibNMinusTwo = fibNMinusOne;
fibNMinusOne = fibN;
}
return fibN;
}
- 基于矩阵乘法
struct Matrix2By2
{
Matrix2By2
(
long long m00 = 0,
long long m01 = 0,
long long m10 = 0,
long long m11 = 0
)
:m_00(m00), m_01(m01), m_10(m10), m_11(m11)
{
}
long long m_00;
long long m_01;
long long m_10;
long long m_11;
};
Matrix2By2 MatrixMultiply
(
const Matrix2By2& matrix1,
const Matrix2By2& matrix2
)
{
return Matrix2By2(
matrix1.m_00 * matrix2.m_00 + matrix1.m_01 * matrix2.m_10,
matrix1.m_00 * matrix2.m_01 + matrix1.m_01 * matrix2.m_11,
matrix1.m_10 * matrix2.m_00 + matrix1.m_11 * matrix2.m_10,
matrix1.m_10 * matrix2.m_01 + matrix1.m_11 * matrix2.m_11);
}
Matrix2By2 MatrixPower(unsigned int n)
{
assert(n > 0);
Matrix2By2 matrix;
if(n == 1)
{
matrix = Matrix2By2(1, 1, 1, 0);
}
else if(n % 2 == 0)
{
matrix = MatrixPower(n / 2);
matrix = MatrixMultiply(matrix, matrix);
}
else if(n % 2 == 1)
{
matrix = MatrixPower((n - 1) / 2);
matrix = MatrixMultiply(matrix, matrix);
matrix = MatrixMultiply(matrix, Matrix2By2(1, 1, 1, 0));
}
return matrix;
}
long long Fibonacci_Solution3(unsigned int n)
{
int result[2] = {0, 1};
if(n < 2)
return result[n];
Matrix2By2 PowerNMinus2 = MatrixPower(n - 1);
return PowerNMinus2.m_00;
}
image.png题目二:青蛙跳台阶问题。
一只青蛙一次可以跳上 1级台阶,也可以跳上2级台阶。求该青蛙跳上一个n级的台阶总共有多少种跳法。
long long Fibonacci(unsigned int n) {
if (n <= 2) {
return n;
}
long long fibNMinusOne = 2;
long long fibNMinusTwo = 1;
long long fibN = 0;
for (unsigned int i = 3; i <= n; ++i) {
fibN = fibNMinusOne + fibNMinusTwo;
fibNMinusTwo = fibNMinusOne;
fibNMinusOne = fibN;
}
return fibN;
}
摘抄资料:《剑指offer》
网友评论