美文网首页
斐波那契数列 青蛙跳台阶

斐波那契数列 青蛙跳台阶

作者: gaookey | 来源:发表于2021-11-01 17:47 被阅读0次

    题目一:求斐波那契数列的第n项。
    写一个函数,输入n,求斐波那契(Fibonacci)数列的第n 项。斐波那契数列的定义如下:

    image.png
    1. 递归。时间效率很低,不推荐。
    long long Fibonacci(unsigned int n) {
        if (n <= 0) {
            return 0;
        }
        
        if (n == 1) {
            return 1;
        }
        
        return Fibonacci(n - 1) + Fibonacci(n - 2);
    }
    
    1. 循环。把递归的算法用循环实现,极大地提高了时间效率。时间复杂度是O(n),推荐。
    long long Fibonacci(unsigned int n) {
        int result[2] = {0, 1};
        if (n < 2) {
            return result[n];
        }
        
        long long fibNMinusOne = 1;
        long long fibNMinusTwo = 0;
        long long fibN = 0;
        
        for (unsigned int i = 2; i <= n; ++i) {
            fibN = fibNMinusOne + fibNMinusTwo;
            fibNMinusTwo = fibNMinusOne;
            fibNMinusOne = fibN;
        }
        
        return fibN;
    }
    
    1. 基于矩阵乘法
    struct Matrix2By2
    {
        Matrix2By2
        (
         long long m00 = 0,
         long long m01 = 0,
         long long m10 = 0,
         long long m11 = 0
         )
        :m_00(m00), m_01(m01), m_10(m10), m_11(m11)
        {
        }
        
        long long m_00;
        long long m_01;
        long long m_10;
        long long m_11;
    };
    
    Matrix2By2 MatrixMultiply
     (
      const Matrix2By2& matrix1,
      const Matrix2By2& matrix2
      )
    {
        return Matrix2By2(
                          matrix1.m_00 * matrix2.m_00 + matrix1.m_01 * matrix2.m_10,
                          matrix1.m_00 * matrix2.m_01 + matrix1.m_01 * matrix2.m_11,
                          matrix1.m_10 * matrix2.m_00 + matrix1.m_11 * matrix2.m_10,
                          matrix1.m_10 * matrix2.m_01 + matrix1.m_11 * matrix2.m_11);
    }
    
    Matrix2By2 MatrixPower(unsigned int n)
    {
        assert(n > 0);
        
        Matrix2By2 matrix;
        if(n == 1)
        {
            matrix = Matrix2By2(1, 1, 1, 0);
        }
        else if(n % 2 == 0)
        {
            matrix = MatrixPower(n / 2);
            matrix = MatrixMultiply(matrix, matrix);
        }
        else if(n % 2 == 1)
        {
            matrix = MatrixPower((n - 1) / 2);
            matrix = MatrixMultiply(matrix, matrix);
            matrix = MatrixMultiply(matrix, Matrix2By2(1, 1, 1, 0));
        }
        
        return matrix;
    }
    
    long long Fibonacci_Solution3(unsigned int n)
    {
        int result[2] = {0, 1};
        if(n < 2)
            return result[n];
        
        Matrix2By2 PowerNMinus2 = MatrixPower(n - 1);
        return PowerNMinus2.m_00;
    }
    

    题目二:青蛙跳台阶问题。
    一只青蛙一次可以跳上 1级台阶,也可以跳上2级台阶。求该青蛙跳上一个n级的台阶总共有多少种跳法。

    image.png
    long long Fibonacci(unsigned int n) {
        if (n <= 2) {
            return n;
        }
        
        long long fibNMinusOne = 2;
        long long fibNMinusTwo = 1;
        long long fibN = 0;
        
        for (unsigned int i = 3; i <= n; ++i) {
            fibN = fibNMinusOne + fibNMinusTwo;
            fibNMinusTwo = fibNMinusOne;
            fibNMinusOne = fibN;
        }
        
        return fibN;
    }
    

    摘抄资料:《剑指offer》

    相关文章

      网友评论

          本文标题:斐波那契数列 青蛙跳台阶

          本文链接:https://www.haomeiwen.com/subject/kjvwdltx.html