一、大数据的应用
大数据挖掘商业价值的方法主要分为四种:
1.客户群体细分,然后为每个群体量定制特别的服务。
2.模拟现实环境,发掘新的需求同时提高投资的回报率。
3.加强部门联系,提高整条管理链条和产业链条的效率。
4. 降低服务成本,发现隐藏线索进行产品和服务的创新
大数据的类型大致可分为三类:
1.传统企业数据(Traditional enterprise data):包括 CRM systems的消费者数据,传统的ERP数据,库存数据以及账目数据等。
2.机器和传感器数据(Machine-generated /sensor data):包括呼叫记录(Call Detail Records),智能仪表,工业设备传感器,设备日志(通常是Digital exhaust),交易数据等。
3.社交数据(Social data):包括用户行为记录,反馈数据等。如Twitter,Facebook这样的社交媒体平台。
二、大数据的定义
1.大数据(Big Data)是指“无法用现有的软件工具提取、存储、搜索、共享、分析和处理的海量的、复杂的数据集合。”业界通常用4个V(即Volume、Variety、Value、Velocity)来概括大数据的特征。
2.数据体量巨大(Volume)。截至目前,人类生产的所有印刷材料的数据量是200PB,而历史上全人类说过的所有的话的数据量大约是5EB(1EB=210PB)。
3. 数据类型繁多(Variety)。相对于以往便于存储的以文本为主的结构化数据,非结构化数据越来越多,包括网络日志、音频、视频、图片、地理位置信息等,这些多类型的数据对数据的处理能力提出了更高要求。
4. 价值密度低(Value)。价值密度的高低与数据总量的大小成反比。如何通过强大的机器算法更迅速地完成数据的价值“提纯”成为目前大数据背景下亟待解决的难题。
处理速度快(Velocity)。大数据区分于传统数据挖掘的最显著特征。根据IDC的“数字宇宙”的报告,预计到2020年,全球数据使用量将达到35.2ZB。
三、大数据的价值
了解了大数据的典型应用,理解了大数据的定义。这时相信在每个人的心中,关于大数据的价值都有了自己的答案。
2010年《Science》上刊登了一篇文章指出,虽然人们的出行的模式有很大不同,但我们大多数人同样是可以预测的。这意味着我们能够根据个体之前的行为轨迹预测他或者她未来行踪的可能性,即93%的人类行为可预测。
而大数定理告诉我们,在试验不变的条件下,重复试验多次,随机事件的频率近似于它概率。“有规律的随机事件”在大量重复出现的条件下,往往呈现几乎必然的统计特性。
随着计算机的处理能力的日益强大,你能获得的数据量越大,你能挖掘到的价值就越多。
四、大数据的核心
1. 元数据(Metadata)的概念
简单说,元数据是对数据本身进行描述的数据,或者说,它不是对象本身,它只描述对象的属性。
2. 大数据应用的第一阶段:辅助产品。
最初的应用比较简单,就是用以辅助产品人员和市场人员做判断。
3.大数据应用的第二阶段:创造价值
在数据的数量和质量达到一定程度后,事情开始变化了。元数据将不仅作为产品的辅助,而是变成了最有价值的产生本身。
4.大数据应用的第三阶段:塑造我们。
我之前也总是对行为数据表示不屑。你知道我在淘宝买了点东西、跟谁微信聊了几句话、去百度随便查了点东西,就能知道我是什么人了?
微信公众号:“程序员OfHome”
程序员OfHomeQQ群:610535338
网友评论