美文网首页
排序算法

排序算法

作者: 星空WU | 来源:发表于2021-02-13 16:19 被阅读0次

1)直接选择排序

不稳定 时间复杂度:n^2

算法思想:

    从第一个元素开始,依次查找对比,找到最小的元素与第一个元素交换,

 再从第二个元素开始找后面元素的最小值与第二个元素交换,以此类推,直到整个数组有序。

2)冒泡排序

稳定 n^2

    这种算法会重复的比较数组中相邻的两个元素,如果一个元素比另一个元素大(小),那么就交换这两个元素的位置。重复这一比较直至最后一个元素。每一趟比较都能找出未排序元素中最大或者最小的那个数字。这就如同水泡从水底逐个飘到水面一样。冒泡排序是一种时间复杂度较高,效率较低的排序方法。

3)快排

不稳定算法,时间复杂度:最差O(n^2),平均O(nlogn)

  1、 从序列中挑出一个元素,作为"基准"(pivot).

  2、把所有比基准值小的元素放在基准前面,所有比基准值大的元素放在基准的后面(相同的数可以到任一边),这个称为分区(partition)操作。

  3、对每个分区递归地进行步骤1~2,递归的结束条件是序列的大小是0或1,这时整体已经被排好序了。

4)插入排序

它的基本思想是将一个记录插入到已经排好序的有序表中,从而一个新的、记录数增1的有序表。在其实现过程使用双层循环,外层循环对除了第一个元素之外的所有元素,内层循环对当前元素前面有序表进行待插入位置查找,并进行移动 

基本思想

    插入排序的工作方式像许多人排序一手扑克牌。开始时,我们的左手为空并且桌子上的牌面向下。然后,我们每次从桌子上拿走一张牌并将它插入左手中正确的位置。为了找到一张牌的正确位置,我们从右到左将它与已在手中的每张牌进行比较。拿在左手上的牌总是排序好的,原来这些牌是桌子上牌堆中顶部的牌。

插入排序是指在待排序的元素中,假设前面n-1(其中n>=2)个数已经是排好顺序的,现将第n个数插到前面已经排好的序列中,,

时间复杂度

在插入排序中,当待排序数组是有序时,是最优的情况,只需当前数跟前一个数比较一下就可以了,这时一共需要比较N- 1次,时间复杂度为O(N)

最坏的情况是待排序数组是逆序的,此时需要比较次数最多,总次数记为:1+2+3+…+N-1,所以,插入排序最坏情况下的时间复杂度为O(N^2)

稳定性分析

如果待排序的序列中存在两个或两个以上具有相同关键词的数据,排序后这些数据的相对次序保持不变,即它们的位置保持不变,通俗地讲,就是两个相同的数的相对顺序不会发生改变,则该算法是稳定的;如果排序后,数据的相对次序发生了变化,则该算法是不稳定的。关键词相同的数据元素将保持原有位置不变,所以该算法是稳定的.

适用范围

插入排序适用于已经有部分数据已经排好,并且排好的部分越大越好。一般在输入规模大于1000的场合下不建议使用插入排序。

相关文章

  • java实现快速排序、归并排序、希尔排序、基数排序算法...

    快速排序算法 归并排序算法 希尔排序算法 基数排序算法

  • web开发需要知道的几个算法

    算法分类 快速排序算法 深度优先算法 广度优先算法 堆排序算法 归并排序算法

  • 算法学习(1)-排序算法

    八大排序算法九大排序算法再总结[经典排序算法][集锦][直观学习排序算法] 视觉直观感受若干常用排序算法 快速排序...

  • 经典排序算法总结

    经典排序算法集锦 冒泡法 排序算法入门之冒泡排序 排序算法入门之冒泡排序优化

  • 前端算法学习-第一篇

    冒泡排序算法 冒泡排序算法是最慢的排序算法之一,也是最容易实现的排序算法。之所以叫冒泡排序是因为使用这种算法排序时...

  • 七大排序算法之冒泡排序

    七大排序算法之冒泡排序 @(算法笔记)[排序算法, 冒泡排序, C++实现] 冒泡排序介绍 冒泡排序是七大排序算法...

  • 算法-选择排序

    算 法:选择排序算法时间复杂度: 选择排序算法概述 选择排序伪代码 选择排序实现 选择排序算法概述 排序算法有许...

  • 浅谈排序算法

    排序算法有很多种,今天先谈谈一些简单的排序算法。包括桶排序、冒泡排序和快速排序算法。后期总结各种排序算法。 桶排序...

  • 线性排序

    桶排序、计数排序、基数排序 一、线性排序算法介绍 1.线性排序算法包括桶排序、计数排序、基数排序。2.线性排序算法...

  • 算法4:插入排序和选择排序算法的比较

    排序算法列表电梯: 选择排序算法:详见 《算法4》2.1 - 选择排序算法(Selection Sort), Py...

网友评论

      本文标题:排序算法

      本文链接:https://www.haomeiwen.com/subject/kkbsxltx.html