1、抓取本地网页解析其中的图片、标题、价格、星级和浏览量
经过查看和分析,每一项都是由一个div包裹
<div class="col-sm-4 col-lg-4 col-md-4">
<div class="thumbnail">
<img src="img/pic_0000_073a9256d9624c92a05dc680fc28865f.jpg" alt="">
<div class="caption">
<h4 class="pull-right">$24.99</h4>
<h4>
<a href="#">EarPod</a></h4>
<p>See more snippets like this online store item at web store</p>
</div>
<div class="ratings">
<p class="pull-right">65 reviews</p>
<p>
<span class="glyphicon glyphicon-star"></span>
<span class="glyphicon glyphicon-star"></span>
<span class="glyphicon glyphicon-star"></span>
<span class="glyphicon glyphicon-star"></span>
<span class="glyphicon glyphicon-star"></span>
</p>
</div>
</div>
</div>
抓取数据的Python代码#
from bs4 import BeautifulSoup
path = r'G:/1_2_homework_required/index.html'
with open(path,'r') as wb_data:
soup = BeautifulSoup(wb_data,'lxml')
imgs = soup.select('div.col-sm-4 > div.thumbnail > img')
titles = soup.select('div.col-sm-4 > div.thumbnail > div.caption > h4:nth-of-type(2) > a')
prices = soup.select('div.col-sm-4 > div.thumbnail > div.caption > h4:nth-of-type(1)')
stars = soup.select('div.col-sm-4 > div.thumbnail > div.ratings > p:nth-of-type(2)')
views = soup.select('div.col-sm-4 > div.thumbnail > div.ratings > p.pull-right')
for img,title,price,star,view in zip(imgs,titles,prices,stars,views):
data = {
'title' : title.get_text(),
'img' : img.get('src'),
'price' : price.get_text(),
'star' : len(star.find_all('span',class_='glyphicon glyphicon-star')),
'view' : view.get_text()
}
print(data)
这题的难点在于星星数的抓取, 观察发现,每一个星星会有一次
<span class="glyphicon glyphicon-star"></span>
所以统计有多少次,就知道有多少个星星了;
使用find_all 统计有几处是星星的样式,第一个参数定位标签名,第二个参数定位css 样式由于find_all()返回的结果是列表,我们再使用len()方法去计算列表中的元素个数
2、抓取小猪短租网的列表页和详情页数据
1. 列表页的抓取
def item_link_list(page):
for i in range(1,page+1):
ti = random.randrange(1,4)
time.sleep(ti)
url = 'http://sh.xiaozhu.com/search-duanzufang-p{}-0/'.format(i)
print(url)
wb_data = requests.get(url)
soup = BeautifulSoup(wb_data.text,'lxml')
urls = imgs = soup.select('ul.pic_list.clearfix > li > a')
prices = soup.select('div.result_btm_con.lodgeunitname > span > i')
titles = soup.select('div.result_btm_con.lodgeunitname > div.result_intro > a > span')
for title,url,price,img in zip(titles,urls,prices,imgs):
da = {
'title' : title.get_text(),
'url' : url.get('href'),
'price' : price.get_text(),
}
print(da)
结果为
1.jpg2.根据url抓取详情页数据
def returnSex(sexclass):
if sexclass == 'member_ico':
return '男'
if sexclass == 'member_ico1':
return '女'
def item_detail(url):
wd_data = requests.get(url)
soup = BeautifulSoup(wd_data.text,'lxml')
title = soup.select('div.pho_info > h4 > em')[0].get_text()
address = soup.select('div.pho_info > p > span.pr5')[0].get_text()
price = soup.select('div.day_l > span')[0].get_text()
img = soup.select('#curBigImage')[0].get('src')
host_img = soup.select('div.member_pic > a > img')[0].get('src')
host_sex = soup.select('div.member_pic > div')[0].get('class')[0]
host_name = soup.select('#floatRightBox > div.js_box.clearfix > div.w_240 > h6 > a')[0].get_text()
data = {
'title': title,
'address': address.strip().lstrip().rstrip(','),
'price': price,
'img': img,
'host_img': host_img,
'ownersex': returnSex(host_sex),
'ownername': host_name
}
print(data)
结果为#
1.jpg3.总结
这次的作业基本无太大的问题,最难的是判断房东的性别,需要通过类名来判断
3.抓取Weheartit前20页数据
根据传入页数抓取1到页数的所有图片链接
def get_list_imgs(page):
for index in range(1,page+1):
time.sleep(3)
url = 'http://weheartit.com/recent?scrolling=true&page={0}'.format(index)
wb_data = requests.get(url)
soup = BeautifulSoup(wb_data.text,'lxml')
imgs = soup.select('img.entry_thumbnail')
for img in imgs:
img = img.get('src')
down_url.append(img)
print(url)
根据url下载图片
def down_img(urls):
for item in urls:
time.sleep(1)
name = item[-24:-15]
urlsd = path + name + '.jpg'
print(urlsd)
urllib.request.urlretrieve(item, urlsd)
print('Done')
4.抓取58同城的列表页和详情页
首先是根据用户的类别和要抓取的页数来获得物品的链接地址
def get_item_list(who_sells,page):
links = []
for index in range(1,page+1):
url = 'http://bj.58.com/pbdn/{}/pn{}'.format(str(who_sells),index)
wb_data = requests.get(url)
soup = BeautifulSoup(wb_data.text,'lxml')
for item_url in soup.select('td.t > a.t'):
if 'bj.58.com' in str(item_url):
link = item_url.get('href').split('?')[0]
links.append(link)
else:
pass
return links
再根据链接地址抓取物品的信息
# 获得物品成色
def get_quality(qu):
if qu == '-':
return '不明'
else:
return qu
def get_detail_item(url):
wb_data = requests.get(url)
soup = BeautifulSoup(wb_data.text,'lxml')
category = soup.select('div.breadCrumb.f12 > span:nth-of-type(3) > a')[0].get_text()
title = soup.select('div.col_sub.mainTitle > h1')[0].get_text()
date = soup.select('li.time')[0].get_text()
price = soup.select('span.price.c_f50')[0].get_text()
quality = soup.select('div.su_con > span')[1].get_text().strip().lstrip().rstrip(',')
quality = get_quality(quality)
area = list(soup.select('.c_25d')[0].stripped_strings) if soup.find_all('span','c_25d') else None
date = {
'category' : category,
'title' : title,
'date' : date,
'price' : price,
'quality' : quality,
'area' : area
}
print(date)
通过这儿一周的练习,我了解了有关于爬虫的基本信息。也在课外爬了一些网页作为练习。深感python语言的精妙之处,希望在第二周的学习中更近一步
网友评论