前沿
sleuth也不是一个新鲜的东西,说白了就是一个APM的一个浓缩版,spring Cloud Sleuth为 spring Cloud提供了分布式跟踪的解决方案,它大量借用了Google Dapper、 Twitter Zipkin和 Apache HTrace的设计
构建了ELK的日志系统和监控系统这两个能够快速的发现系统中的问题,但是由于微服务架构中系统众多,系统之间的交互还比较复杂,在产生了大量的日志之后,可以帮助我们定位问题,但是在紧急情况下难以帮助我们快速,是快速的定位和解决问题,这个就调用链的设计初衷,在微服务中,调用链比较长的时候,如果出现问题,很容易出现踢皮球的情况,这种情况下,打开调用链,一看,谁的就是谁的不说不闹,多好。
市面上比较常见的APM有:pinpoint,Twitter的zipkin,美团的Cat,Google的Dapper,这里值得表扬美团,继续和金服的pk吧,最牛的还是Google,他发表了一篇Dapper就有好多公司去研究,最终形成自己的产品,不由的让我想起他的GFS,bigTable在大数据前期google为大数据所做的贡献,向慷慨的人致敬,懂得分享的人最可爱,嗯,对···进入正题
sleuth
简单说一下调用链的东西TraceID 链路ID 在整个调用链中这个东西是不变的
SpanId 步骤ID 经过一个node就会变
ParentSpanID 很同意理解,这个spanId是从哪个span来的,这个设计很重要的
复杂的东西spring boot已经给我们封装好了
#######sleuth客户端
在需要跟踪的微服务中pom.xml加上
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-sleuth</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-sleuth-zipkin</artifactId>
</dependency>
在application.yml中添加
spring:
zipkin:
base-url: http://sleuth server的ip:端口
sleuth:
sampler:
percentage: 1 ##这个是收集比例,1表示100%shouji ,全部收集
sleuth服务端
pom.xml添加
<dependency>
<groupId>io.zipkin.java</groupId>
<artifactId>zipkin-autoconfigure-ui</artifactId>
</dependency>
<dependency>
<groupId>io.zipkin.java</groupId>
<artifactId>zipkin-server</artifactId>
</dependency>
并且在启动类上添加
@EnableZipkinServer
客户端和服务端都启动,进入到zipkin服务端
image.png
可以根据时间,服务名称去查询,点击可查看调用链详情
zipkin+kafka+ES
因为现在zipkin的调用数据都是存在内存中的,一旦zipkin server重启,则意味着之前的都没有了,在这并发高的,一会就把内存挤爆了,所以最终zipkin的数据是要持久化的,要么mysql,这里采用ES,毕竟在大数据检索面前ES比mysql好很多很多
还有在页面请求量大的时候zipkin和ES直接联通存数据,肯定会阻塞,这里就用kafka来解决这个问题
pom.xml需要引入
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-sleuth</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-sleuth-zipkin-stream</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-stream-binder-kafka</artifactId>
<version>1.3.1.RELEASE</version>
</dependency>
application.yml添加
spring:
cloud:
stream:
kafka:
binder:
brokers: kafkaIP:9092
zkNodes: zkIP:2181
zipkin:
storage:
type: elasticsearch
elasticsearch:
cluster: elasticsearch
hosts: http://ESIP:9200
index: zipkin
index-shards: 5
index-replicas: 1
再次启动,加入数据,观察ES-head
ES-head
已经将调用链存进去了,这里要感谢spring 将调用链集成,方便我们应用
望指正,不吝赐教
网友评论