美文网首页
21. STM32 x Arduino 通信 —— nRF24L

21. STM32 x Arduino 通信 —— nRF24L

作者: T_K_233 | 来源:发表于2020-08-13 14:18 被阅读0次

Arduino 配置

/* 
 * nRF24L01_RX.ino
 * 
 *
 * ====== Pin Connection ======
 * 
 *            --------------------------
 *  GND -  GND ■■ VCC - 3V3            |
 *   D9 -   CE ■■ CSN - D10            |
 *  D13 - SLCK ■■ MOSI - D11           |
 *  D12 - MISO ■■ IRQ - NC             |
 *            --------------------------
 * 
 * ============================
 */

#include <SPI.h>
#include <nRF24L01.h>
#include <RF24.h>

RF24 radio(9, 10);                  // CE, CSN

const uint8_t ADDR[6] = {1, 0, 0, 0, 0};
const uint8_t BUFFER_SIZE = 32;
uint8_t buffer[BUFFER_SIZE];

void setup() {
  Serial.begin(115200);
  radio.begin();                      // Starting the Wireless communication
  radio.openReadingPipe(1, ADDR);     // Setting the address at which we will receive the data
                                      // channel should not be 0

  radio.setPALevel(RF24_PA_MIN);      // You can set this as minimum or maximum depending on the distance between the transmitter and receiver.
  radio.setChannel(87);
  radio.setDataRate(RF24_1MBPS);
  radio.setCRCLength(RF24_CRC_16);
  radio.enableDynamicPayloads();
  radio.setAutoAck(1);
  radio.startListening();             // This sets the module as receiver
  Serial.println("Start listening...");
}

void loop() {
  if (radio.available() > 0) {
    radio.read(&buffer, sizeof(buffer));    //Reading the data
    Serial.print("Received: ");
    Serial.println((char *)buffer);
  }
}
/* 
 * nRF24L01_TX.ino
 * 
 *
 * ====== Pin Connection ======
 * 
 *            --------------------------
 *  GND -  GND ■■ VCC - 3V3            |
 *   D9 -   CE ■■ CSN - D10            |
 *  D13 - SLCK ■■ MOSI - D11           |
 *  D12 - MISO ■■ IRQ - NC             |
 *            --------------------------
 * 
 * ============================
 */

#include <SPI.h>
#include <nRF24L01.h>
#include <RF24.h>

RF24 radio(9, 10);                  // CE, CSN

const uint8_t ADDR[6] = {1, 0, 0, 0, 0};
const uint8_t BUFFER_SIZE = 32;
uint8_t buffer[BUFFER_SIZE] = "hello world";

void setup() {
  Serial.begin(115200);
  radio.begin();                    // Starting the Wireless communication
  radio.openWritingPipe(ADDR);      // Setting the address where we will send the data
  radio.setPALevel(RF24_PA_MIN);    // You can set this as minimum or maximum depending on the distance between the transmitter and receiver.
  radio.setChannel(87);
  radio.setDataRate(RF24_1MBPS);
  radio.setCRCLength(RF24_CRC_16);
  radio.enableDynamicPayloads();
  radio.setAutoAck(1);
  radio.stopListening();            // This sets the module as transmitter
  Serial.println("Start sending...");
}

void loop() {
  radio.write(&buffer, sizeof(buffer));
  Serial.println("message sent");
  delay(500);
}

STM32 配置

image.png

PA2 对应 CSN chip select
PA3 对应 CE chip enable

需要下载 MY_NRF24.h,在 这里

接收信号:

/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file           : main.c
  * @brief          : Main program body
  ******************************************************************************
  * @attention
  *
  * <h2><center>&copy; Copyright (c) 2020 STMicroelectronics.
  * All rights reserved.</center></h2>
  *
  * This software component is licensed by ST under BSD 3-Clause license,
  * the "License"; You may not use this file except in compliance with the
  * License. You may obtain a copy of the License at:
  *                        opensource.org/licenses/BSD-3-Clause
  *
  ******************************************************************************
  */

/**
 * | nRF24l01 Pin connection |
 * | ----------------------- |
 * | PA2 | CS    chip select |
 * | PA3 | CE    chip enable |
 * | PA5 | SLCK              |
 * | PA6 | MISO              |
 * | PA7 | MOSI              |
 * | ----------------------- |
 */
/* USER CODE END Header */

/* Includes ------------------------------------------------------------------*/
#include "main.h"

/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "MY_NRF24.h"
/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */

/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */

/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/
SPI_HandleTypeDef hspi1;

UART_HandleTypeDef huart1;

/* USER CODE BEGIN PV */

/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_SPI1_Init(void);
static void MX_USART1_UART_Init(void);
/* USER CODE BEGIN PFP */

/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */

const uint64_t ADDR = 0x0000000001;
char myRxData[50];
char buffer[32] = "Ack by STMF7!";
/* USER CODE END 0 */

/**
  * @brief  The application entry point.
  * @retval int
  */
int main(void)
{
  /* USER CODE BEGIN 1 */

  /* USER CODE END 1 */
  

  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  /* Configure the system clock */
  SystemClock_Config();

  /* USER CODE BEGIN SysInit */

  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_SPI1_Init();
  MX_USART1_UART_Init();
  /* USER CODE BEGIN 2 */

  NRF24_begin(GPIOA, GPIO_PIN_2, GPIO_PIN_3, hspi1);
  nrf24_DebugUART_Init(huart1);

  printRadioSettings();

  NRF24_openReadingPipe(1, ADDR);
  NRF24_setPayloadSize(32);
  NRF24_setPALevel(RF_PWR_LOW);
  NRF24_setChannel(87);
  NRF24_setDataRate(RF24_1MBPS);
  NRF24_setCRCLength(RF24_CRC_16);
  NRF24_enableDynamicPayloads();
  NRF24_enableAckPayload();
  NRF24_setAutoAck(1);
  NRF24_startListening();

  HAL_Delay(100);

  printRadioSettings();
  while (1) {
    if (NRF24_available() > 0) {
      HAL_UART_Transmit(&huart1, (uint8_t *)"available  ", sizeof("available  "), 10);
      NRF24_read(myRxData, 3);
      NRF24_writeAckPayload(1, buffer, 32);
      myRxData[3] = '\n';
      HAL_UART_Transmit(&huart1, (uint8_t *)myRxData, 4, 10);
    }
  }


  NRF24_setAutoAck(1);
  //NRF24_setChannel(52);
  //NRF24_setPayloadSize(3);
  NRF24_openReadingPipe(1, ADDR);
  //NRF24_enableDynamicPayloads();
  NRF24_enableAckPayload();

  printRadioSettings();

  NRF24_startListening();

  HAL_UART_Transmit(&huart1, (uint8_t *)"ready\n", sizeof("ready\n"), 10);
  /* USER CODE END 2 */
 
 

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */
    if (NRF24_available()) {
      HAL_UART_Transmit(&huart1, (uint8_t *)"available  ", sizeof("available  "), 10);
      NRF24_read(myRxData, 3);
      NRF24_writeAckPayload(1, buffer, 32);
      myRxData[3] = '\n';
      HAL_UART_Transmit(&huart1, (uint8_t *)myRxData, 4, 10);
    }
  }
  /* USER CODE END 3 */
}

/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};

  /** Initializes the CPU, AHB and APB busses clocks 
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
  RCC_OscInitStruct.HSIState = RCC_HSI_ON;
  RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }
  /** Initializes the CPU, AHB and APB busses clocks 
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK)
  {
    Error_Handler();
  }
}

/**
  * @brief SPI1 Initialization Function
  * @param None
  * @retval None
  */
static void MX_SPI1_Init(void)
{

  /* USER CODE BEGIN SPI1_Init 0 */

  /* USER CODE END SPI1_Init 0 */

  /* USER CODE BEGIN SPI1_Init 1 */

  /* USER CODE END SPI1_Init 1 */
  /* SPI1 parameter configuration*/
  hspi1.Instance = SPI1;
  hspi1.Init.Mode = SPI_MODE_MASTER;
  hspi1.Init.Direction = SPI_DIRECTION_2LINES;
  hspi1.Init.DataSize = SPI_DATASIZE_8BIT;
  hspi1.Init.CLKPolarity = SPI_POLARITY_LOW;
  hspi1.Init.CLKPhase = SPI_PHASE_1EDGE;
  hspi1.Init.NSS = SPI_NSS_SOFT;
  hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_2;
  hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB;
  hspi1.Init.TIMode = SPI_TIMODE_DISABLE;
  hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
  hspi1.Init.CRCPolynomial = 10;
  if (HAL_SPI_Init(&hspi1) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN SPI1_Init 2 */

  /* USER CODE END SPI1_Init 2 */

}

/**
  * @brief USART1 Initialization Function
  * @param None
  * @retval None
  */
static void MX_USART1_UART_Init(void)
{

  /* USER CODE BEGIN USART1_Init 0 */

  /* USER CODE END USART1_Init 0 */

  /* USER CODE BEGIN USART1_Init 1 */

  /* USER CODE END USART1_Init 1 */
  huart1.Instance = USART1;
  huart1.Init.BaudRate = 115200;
  huart1.Init.WordLength = UART_WORDLENGTH_8B;
  huart1.Init.StopBits = UART_STOPBITS_1;
  huart1.Init.Parity = UART_PARITY_NONE;
  huart1.Init.Mode = UART_MODE_TX_RX;
  huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  huart1.Init.OverSampling = UART_OVERSAMPLING_16;
  if (HAL_UART_Init(&huart1) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN USART1_Init 2 */

  /* USER CODE END USART1_Init 2 */

}

/**
  * @brief GPIO Initialization Function
  * @param None
  * @retval None
  */
static void MX_GPIO_Init(void)
{
  GPIO_InitTypeDef GPIO_InitStruct = {0};

  /* GPIO Ports Clock Enable */
  __HAL_RCC_GPIOA_CLK_ENABLE();

  /*Configure GPIO pin Output Level */
  HAL_GPIO_WritePin(GPIOA, GPIO_PIN_2|GPIO_PIN_3, GPIO_PIN_RESET);

  /*Configure GPIO pins : PA2 PA3 */
  GPIO_InitStruct.Pin = GPIO_PIN_2|GPIO_PIN_3;
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);

}

/* USER CODE BEGIN 4 */

/* USER CODE END 4 */

/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */

  /* USER CODE END Error_Handler_Debug */
}

#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{ 
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
     tex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

相关文章

网友评论

      本文标题:21. STM32 x Arduino 通信 —— nRF24L

      本文链接:https://www.haomeiwen.com/subject/kpibdktx.html