美文网首页算法学习
算法题--包含1~n的所有二叉搜索树

算法题--包含1~n的所有二叉搜索树

作者: 岁月如歌2020 | 来源:发表于2020-04-27 02:34 被阅读0次
image.png

0. 链接

题目链接

1. 题目

Given an integer n, generate all structurally unique BST's (binary search trees) that store values 1 ... n.

Example:

Input: 3
Output:
[
  [1,null,3,2],
  [3,2,null,1],
  [3,1,null,null,2],
  [2,1,3],
  [1,null,2,null,3]
]
Explanation:
The above output corresponds to the 5 unique BST's shown below:

   1         3     3      2      1
    \       /     /      / \      \
     3     2     1      1   3      2
    /     /       \                 \
   2     1         2                 3

2. 思路1:递归

  • 以任何一点作为根节点, 然后分别处理左右子树
  • 处理左右子树的问题,仍然与处理根节点的问题的逻辑相同
  • 递归函数参数为起止数字, 返回为子树的根节点列表

3. 代码

# coding:utf8
from typing import List


# Definition for a binary tree node.
class TreeNode:
    def __init__(self, x):
        self.val = x
        self.left = None
        self.right = None


class Solution:
    def generateTrees(self, n: int) -> List[TreeNode]:

        def generate(start, end):
            res = list()
            if start > end:
                res.append(None)

            for i in range(start, end + 1):
                leftlist = generate(start, i - 1)
                rightlist = generate(i + 1, end)
                for leftnode in leftlist:
                    for rightnode in rightlist:
                        root = TreeNode(i)
                        root.left = leftnode
                        root.right = rightnode
                        res.append(root)

            return res

        if n == 0:
            return list()
        else:
            return generate(1, n)

def print_binary_tree(root):

    def collect_nodes(parent, node, results):
        if node is None:
            return
        parent_val = parent.val if parent is not None else 0
        results.append((parent_val, node.val))
        if node.left is None:
            results.append((node.val, None))
        else:
            collect_nodes(node, node.left, results)
        if node.right is None:
            results.append((node.val, None))
        else:
            collect_nodes(node, node.right, results)

    results = list()
    collect_nodes(None, root, results)
    print(results)


solution = Solution()
print('n = 2')
trees = solution.generateTrees(2)
for tree in trees:
    print_binary_tree(tree)

print('\nn = 3')
trees = solution.generateTrees(3)
for tree in trees:
    print_binary_tree(tree)

输出结果

n = 2
[(0, 1), (1, None), (1, 2), (2, None), (2, None)]
[(0, 2), (2, 1), (1, None), (1, None), (2, None)]

n = 3
[(0, 1), (1, None), (1, 2), (2, None), (2, 3), (3, None), (3, None)]
[(0, 1), (1, None), (1, 3), (3, 2), (2, None), (2, None), (3, None)]
[(0, 2), (2, 1), (1, None), (1, None), (2, 3), (3, None), (3, None)]
[(0, 3), (3, 1), (1, None), (1, 2), (2, None), (2, None), (3, None)]
[(0, 3), (3, 2), (2, 1), (1, None), (1, None), (2, None), (3, None)]

4. 结果

image.png

5. 思路2: 动态规划

  • 观察到一个事实, [1 2]的可列树结构, 与[99,100]的可列树结构之间, 具有结构相同的特性,只是数值上相差一个98
  • 利用这个事实, 可以大量复用长度相同的连续数字构成的子树计算结果

6. 代码

class Solution2:
    def generateTrees(self, n: int) -> List[TreeNode]:
        dp = [None] * (n + 1)
        dp[0] = list()
        if n == 0:
            return dp[0]

        dp[0].append(None)
        # 长度为1到n
        for len in range(1, n + 1):
            dp[len] = list()

            # 将不同的数字作为根节点, 且只需考虑1到len
            for root in range(1, len + 1):
                left = root - 1
                right = len - root
                for lefttree in dp[left]:
                    for righttree in dp[right]:
                        tree_root = TreeNode(root)
                        tree_root.left = lefttree
                        tree_root.right = self.copy_tree(righttree, root)
                        dp[len].append(tree_root)

        return dp[n]

    def copy_tree(self, root, offset):
        if root is None:
            return None

        node = TreeNode(root.val + offset)
        node.left = self.copy_tree(root.left, offset)
        node.right = self.copy_tree(root.right, offset)
        return node


def print_binary_tree(root):

    def collect_nodes(parent, node, results):
        if node is None:
            return
        parent_val = parent.val if parent is not None else 0
        results.append((parent_val, node.val))
        if node.left is None:
            results.append((node.val, None))
        else:
            collect_nodes(node, node.left, results)
        if node.right is None:
            results.append((node.val, None))
        else:
            collect_nodes(node, node.right, results)

    results = list()
    collect_nodes(None, root, results)
    print(results)


solution = Solution2()
print('n = 2')
trees = solution.generateTrees(2)
for tree in trees:
    print_binary_tree(tree)

print('\nn = 3')
trees = solution.generateTrees(3)
for tree in trees:
    print_binary_tree(tree)

输出结果

n = 2
[(0, 1), (1, None), (1, 2), (2, None), (2, None)]
[(0, 2), (2, 1), (1, None), (1, None), (2, None)]

n = 3
[(0, 1), (1, None), (1, 2), (2, None), (2, 3), (3, None), (3, None)]
[(0, 1), (1, None), (1, 3), (3, 2), (2, None), (2, None), (3, None)]
[(0, 2), (2, 1), (1, None), (1, None), (2, 3), (3, None), (3, None)]
[(0, 3), (3, 1), (1, None), (1, 2), (2, None), (2, None), (3, None)]
[(0, 3), (3, 2), (2, 1), (1, None), (1, None), (2, None), (3, None)]

结果

image.png

相关文章

网友评论

    本文标题:算法题--包含1~n的所有二叉搜索树

    本文链接:https://www.haomeiwen.com/subject/kqlewhtx.html