题目一
将2个递增的有序链表合并为⼀个有序链表; 要求结果链表仍然使⽤两个链表的存储空间,不另外占⽤其他的存储空间. 表中不允许有重复的数据。
示例:La {1, 2, 3} , Lb {3, 6, 9} ==> Lc {1, 2, 3, 6, 9}
关键词:递增有序链表,最终结果链表不允许有重复数据,保留递增关系,不开辟额外的存储空间即不能开辟新结点等
思路分析:
1.
两个链表分别为La、Lb,合并后的新表使用头指针Lc(Lc的表头结点设为La的表头结点)指向。Pa 和 Pb分别为La、Lb的工作指针,初始化为相应链表的首元结点。
2.
从首元结点开始比较,当两个链表La 和Lb 均未到达表尾结点时,依次摘取其中较小值重新插入在Lc表的最后。
3.
如果两个表中的元素相等,只摘取La表中的元素,删除Lb表中的元素,这样确保合并后表中无重复的元素。
4.
当一个表达到表尾结点为空时,非空表的剩余元素直接链接在Lc表最后。
5.
最后释放链表Lb的头结点。
代码
创建两个数据递增的单向链表,且都有头结点。相关代码这里就不赘述,可以查看数算---线性表(一)中的单向链表相关操作。
void MergeList(LinkList *La, LinkList *Lb, LinkList *Lc){
//目标:将2个递增的有序链表La,Lb 合并为一个递增的有序链表Lc,且数据不重复
LinkList pa,pb,pc,temp;
//pa 是链表La的工作指针,pb 是链表Lb的工作指针, 初始化为首元结点;
pa = (*La)->next;
pb = (*Lb)->next;
*Lc = pc = *La;
while (pa && pb) {
if (pa->data < pb->data) {
//取较小者La中的元素,将pa链接在pc的后面,pa指针后移
pc->next = pa;
pc = pa;
pa = pa->next;
}else if(pa->data > pb->data){
//取较小者Lb的元素,将pb链接在pc后面, pb指针后移
pc->next = pb;
pc = pb;
pb = pb->next;
}else
{
//相等时取La中的元素,删除Lb的元素;
pc->next = pa;
pc = pa;
pa = pa ->next;
temp = pb->next;
free(pb);
pb = temp;
}
}
//将非空表的剩余元素之间链接在Lc表的最后
pc->next = pa?pa:pb;
//释放Lb的头结点
free(*Lb);
}
题目二
已知两个链表A和B分别表示两个集合.其元素递增排列. 设计一个算法,用于求出A与B的交集,并存储在A链表中
示例:La = {2, 4, 6, 8}, Lb = {4, 6, 8, 10} ==> Lc = {4, 6, 8}
关键词:依次摘取2个表中相等的元素重新进行链接,删除其他不等的元素。
思路分析:
1.
从首元结点开始比较,当其中有一个链表到达尾结点时就结束。
2.
两个元素相等时取La中的,删除Lb中的,不想等时删除较小的元素,并将对应的工作指针向后移。
3.
如果有一个链表先到达尾结点时,依次删除另一个非空链表剩余结点,最后释放链表Lb。
代码
void Intersection(LinkList *La, LinkList *Lb, LinkList *Lc){
//目标: 求2个递增的有序链表La,Lb的交集, 使用头指针Lc指向带回;
LinkList pa,pb,pc,temp;
//pa 是链表La的工作指针,pb 是链表Lb的工作指针, 初始化为首元结点;La的头结点作为Lc的头结点;
pa = (*La)->next;
pb = (*Lb)->next;
*Lc = pc = *La;
while (pa && pb) {
if (pa->data == pb->data) {
//相等,交集并入结果链表中;
//(1).取La中的元素,将pa链接到pc的后面,pa指针后移;
pc->next = pa;
pc = pa;
pa = pa->next;
//(2)删除Lb中对应相等的元素
temp = pb;
pb = pb->next;
free(temp);
}else if(pa->data < pb->data){
//删除较小值La的元素;
temp = pa;
pa = pa->next;
free(temp);
}else{
//删除较小值Lb中的元素
temp = pb;
pb = pb->next;
free(temp);
}
}
//Lb为空,删除非空表La中的所有元素
while (pa) {
temp = pa;
pa = pa->next;
free(temp);
}
//La为空,删除非空表Lb中的所有元素
while (pb) {
temp = pb;
pb = pb->next;
free(temp);
}
pc->next = NULL;
free(*Lb);
}
题目三
设计一个算法,将链表中所有节点的链接方向"原地旋转",即要求仅仅利用原表的存储空间. 换句话说,要求算法空间复杂度为O(1)。
示例:L = {0, 2, 4, 6, 8, 10} ==> L = {10, 8, 6, 4, 2, 0}
关键词:不能开辟新空间,只能改变指针的指向,可以考虑前插法。
思路分析:
1.
利用原有的头结点*L,p为工作指针, 初始时p指向首元结点. 因为摘取的结点依次向前插入,为确保链表尾部为空,初始时将头结点的指针域置空。
2.
从前向后遍历链表,依次摘取结点,在摘取结点前需要用指针q记录后继结点,以防止链接后丢失后继结点。
3.
将摘取的结点插入到头结点之后,最后p指向新的待处理节点q(p=q)。
代码
void Inverse(LinkList *L){
//目的: 逆转带头结点单链表L;
LinkList p,q;
//p指向首元结点;
p = (*L)->next;
//头结点的指针域置空
(*L)->next = NULL;
//遍历链表
while (p!=NULL) {
//q执行p的后继
q = p->next;
//p->next = (*L)->next
p->next = (*L)->next;
//*p 插入到头结点之后;
(*L)->next = p;
//处理下一个结点
p = q;
}
}
题目四
设计一个算法,删除递增有序链表中值大于等于mink且小于等于maxk(mink,maxk是给定的两个参数,其值可以和表中的元素相同,也可以不同)的所有元素。
关键词:通过mink和maxk知道下边界和上边界,即找到第一个大于或等于mink和第一个大于maxk的结点。
思路分析:
1.
查找第一个值大于或等于mink的结点,用q指向该结点,pre指向该结点的前驱结点。
2.
继续遍历,找到第一个大于maxk的结点,用p指向该结点。
3.
pre->next = p;
4.
依次释放待删除的结点的空间(介于pre和p之间的所有结点)
代码
void DeleteMinMax(LinkList *L, int mink, int maxk){
//目标: 删除递增有序链表L中值大于等于mink 和小于等于maxk的所有元素
LinkList p,q,pre;
pre = *L;
LinkList temp;
//p指向首元结点
p = (*L)->next;
//1.查找第一值大于mink的结点
while (p && p->data < mink) {
//指向前驱结点
pre = p;
p = p->next;
}
//2.查找第一个值大于等于maxk的结点
while (p && p->data<=maxk) {
p = p->next;
}
//3.修改待删除的结点指针
q = pre->next;
pre->next = p;
while (q != p) {
temp = q->next;
free(q);
q = temp;
}
}
题目五
设将n(n>1)个整数存放到一维数组R中, 试设计一个在时间和空间两方面都尽可能高效的算法;将R中保存的序列循环左移p个位置(0<p<n)个位置, 即将R中的数据由(x0,x1,......,xn-1)变换为(xp,xp+1,...,xn-1,x0,x1,...,xp-1).
示例:
pre[10] = {0,1,2,3,4,5,6,7,8,9},
n = 10, p = 3;
pre[10] = {3,4,5,6,7,8,9,0,1,2};
关键词:就是将前面多少个整体移到后面,后面的往前移动。两部分交换位置。
思路分析:
1.
先将n个数据原地逆置 9,8,7,6,5,4,3,2,1,0;
2.
将n个数据拆解成[9,8,7,6,5,4,3] [2,1,0]
3.
将前n-p个数据和后p个数据分别原地逆置; [3,4,5,6,7,8,9] [0,1,2]
复杂度分析:
时间复杂度
: O(n);
时间复杂度
:O(1);
代码
void Reverse(int *pre,int left ,int right){
//将数组R中的数据原地逆置
//i等于左边界left,j等于右边界right;
int i = left,j = right;
int temp;
//交换pre[i] 和 pre[j] 的值
while (i < j) {
//交换
temp = pre[i];
pre[i] = pre[j];
pre[j] = temp;
//i右移,j左移
i++;
j--;
}
}
void LeftShift(int *pre,int n,int p){
//将长度为n的数组pre 中的数据循环左移p个位置
if (p>0 && p<n) {
//1. 将数组中所有元素全部逆置
Reverse(pre, 0, n-1);
//2. 将前n-p个数据逆置
Reverse(pre, 0, n-p-1);
//3. 将后p个数据逆置
Reverse(pre, n-p, n-1);
}
}
题目六
已知一个整数序列A = (a0,a1,a2,...an-1),其中(0<= ai <=n),(0<= i<=n). 若存在ap1= ap2 = ...= apm = x,且m>n/2(0<=pk<n,1<=k<=m),则称x 为 A的主元素. 例如,A = (0,5,5,3,5,7,5,5)
,则5
是主元素; 若B = (0,5,5,3,5,1,5,7)
,则A 中没有主元素,假设A中的n个元素保存在一个一维数组中,请设计一个尽可能高效的算法,找出数组元素中的主元素,若存在主元素则输出该元素,否则输出-1.
关键词:主元素,是数组中出现次数超过一半的元素
。如果主元素存在的情况下,非主元素必少于数组个数的一半,所以让主元素,非主元素一一配对的话,最后多出来的就是主元素。
思路分析:
1.
选取候选主元素, 从前向后依次扫描数组中的每个整数, 假定第一个整数为主元素,将其保存在Key中,计数为1. 若遇到下一个整数仍然等于key,则计数加1. 否则计数减1. 当计数减到0时, 将遇到的下一个整数保存到key中, 计数重新记为1. 开始新一轮计数. 即可从当前位置开始重上述过程,直到将全部数组元素扫描一遍;
2.
判断key中的元素是否是真正的主元素, 再次扫描数组, 统计key中元素出现的次数,若大于n/2,则为主元素,否则,序列中不存在主元素;
复杂度分析:
时间复杂度
: O(n)
空间复杂度
: O(1)
代码
int MainElement(int *A, int n){
//目标: 求整数序列A中的主元素;
//count 用来计数
int count = 1;
//key 用来保存候选主元素, 初始A[0]
int key = A[0];
//(1) 扫描数组,选取候选主元素
for (int i = 1; i < n; i++) {
//(2) 如果A[i]元素值 == key ,则候选主元素计数加1;
if (A[i] == key) {
count++;
}else{
//(3) 当前元素A[i] 非候选主元素,计数减1;
if(count >0){
count--;
}else{
//(4) 如果count 等于0,则更换候选主元素,重新计数
key = A[i];
count = 1;
}
}
}
//如果count >0
if (count >0){
//(5)统计候选主元素的实际出现次数
for (int i = count = 0; i < n; i++)
if (A[i] == key) count++;
}
//(6)判断count>n/2, 确认key是不是主元素
if (count > n/2) return key;
else return -1; //不存在主元素
}
题目七
用单链表保存m个整数, 结点的结构为(data,link),且|data|<=n(n为正整数). 现在要去设计一个时间复杂度尽可能高效的算法. 对于链表中的data 绝对值相等的结点, 仅保留第一次出现的结点,而删除其余绝对值相等的结点.例如,链表A = {21,-15,15,-7,15}
, 删除后的链表A={21,-15,-7}
;
题目分析:已知|data| <= n,所以可以考虑用空间换时间的方法,申请一颗空间大小为n+1的辅助数组。保存链表中已出现的数值,通过对链表进行一趟扫描来完成删除。
算法思路:
1.
申请大小为n+1的辅助数组t并赋值初值为0;
2.
从首元结点开始遍历链表,依次检查t[|data|]的值, 若[|data|]为0,即结点首次出现,则保留该结点,并置t[|data|] = 1,若t[|data|]不为0,则将该结点从链表中删除.
复杂度分析:
时间复杂度
: O(m),对长度为m的链表进行一趟遍历,则算法时间复杂度为O(m);
空间复杂度
: O(n)
代码
void DeleteEqualNode(LinkList *L,int n){
//目标: 删除单链表中绝对值相等的结点;
//1. 开辟辅助数组p.
int *p = alloca(sizeof(int)*n);
LinkList r = *L;
//2.数组元素初始值置空
for (int i = 0; i < n; i++) {
*(p+i) = 0;
}
//3.指针temp 指向首元结点
LinkList temp = (*L)->next;
//4.遍历链表,直到temp = NULL;
while (temp!= NULL) {
//5.如果该绝对值已经在结点上出现过,则删除该结点
if (p[abs(temp->data)] == 1) {
//临时指针指向temp->next
r->next = temp->next;
//删除temp指向的结点
free(temp);
//temp 指向删除结点下一个结点
temp = r->next;
}else
{
//6. 未出现过的结点,则将数组中对应位置置为1;
p[abs(temp->data)] = 1;
r = temp;
//继续向后遍历结点
temp = temp->next;
}
}
}
网友评论