美文网首页奥数自学研究
高中奥数 2022-01-23

高中奥数 2022-01-23

作者: 天目春辉 | 来源:发表于2022-01-23 10:14 被阅读0次

    2022-01-23-01

    (来源: 数学奥林匹克小丛书 第二版 高中卷 数列与数学归纳法 冯志刚 习题一 P054 习题33)

    n为不小于2的正整数.求所有的实系数多项式

    P\left(x\right)=a_{n}x^{n}+a_{n-1}x^{n-1}+\cdots+a_{0},\left(a_{n}*0\right),

    使得P\left(x\right)恰有n个不大于1的实根,并且

    a_{0}^{2}+a_{1}a_{n}=a_{n}^{2}-a_{0}a_{n-1}.

    由条件,可设

    P\left(x\right)=a_{n}\left(x+\beta_{1}\right)\left(x+\beta_{2}\right)\cdots\left(x+\beta_{n}\right).

    这里\beta_{i}\geqslant 1,i=1,2,\cdots ,n,且a_{n}\ne 0.

    利用a_{0}^{2}+a_{1}a_{n}=a_{n}^{2}+a_{0}a_{n-1}可知

    a_{n}^{2}\left(\prod\limits_{i=1}^{n} \beta_{i}\right)^{2}+a_{n}^{2}\left(\prod\limits_{i=1}^{n} \beta_{i}\right) \sum\limits_{i=1}^{n} \dfrac{1}{\beta_{i}}=a_{n}^{2}+\left(\prod\limits_{i=1}^{n} \beta_{i}\right)\left(\sum\limits_{i=1}^{n} \beta_{i}\right) a_{n}^{2} .

    于是

    \prod\limits_{i=1}^{n} \beta_{i}-\dfrac{1}{\prod\limits_{i=1}^{n} \beta_{i}}=\sum\limits_{i=1}^{n} \beta_{i}-\sum\limits_{i=1}^{n} \dfrac{1}{\beta_{i}} .\qquad(1)

    下面对n运用数学归纳法证明:当\beta_{i}\geqslant 1,i=1,2,\cdots,n时,都有

    \prod\limits_{i=1}^{n} \beta_{i}-\dfrac{1}{\prod\limits_{i=1}^{n} \beta_{i}} \geqslant \sum\limits_{i=1}^{n} \beta_{i}-\sum\limits_{i=1}^{n} \dfrac{1}{\beta_{i}}.

    等号当且仅当\beta_{1},\cdots ,\beta_{n}中有n-1个数等于1时成立.

    n=2时,若\beta_{1}\beta_{2}\geqslant 1,则有如下等价关系成立

    \begin{aligned} \beta_{1} \beta_{2}-\dfrac{1}{\beta_{1} \beta_{2}} & \geqslant\left(\beta_{1}+\beta_{2}\right)-\left(\dfrac{1}{\beta_{1}}+\dfrac{1}{\beta_{2}}\right) \\ & \Leftrightarrow\left(\beta_{1} \beta_{2}\right)^{2}-1 \geqslant\left(\beta_{1}+\beta_{2}\right)\left(\beta_{1} \beta_{2}-1\right) \\ & \Leftrightarrow\left(\beta_{1} \beta_{2}-1\right)\left(\beta_{1}-1\right)\left(\beta_{2}-1\right) \geqslant 0 . \end{aligned}

    所以n=2时,上述命题成立.

    设命题对n=k时成立,当n=k+1时,我们令\alpha=\beta_{k}\beta_{k+1},由归纳假设,可知

    \prod\limits_{i=1}^{k+1} \beta_{i}-\dfrac{1}{\prod\limits_{i=1}^{k+1} \beta_{i}} \geqslant\left(\sum\limits_{i=1}^{k-1} \beta_{i}-\sum\limits_{i=1}^{k-1} \dfrac{1}{\beta_{i}}\right)+\alpha-\dfrac{1}{\alpha},

    等号当且仅当\beta_{1},\beta_{2},\cdots ,\beta_{k-1},\alpha中有k-1个等于1时成立.

    又由n=2的情形,可知\alpha-\dfrac{1}{\alpha}=\beta_{k}\beta_{k+1}-\dfrac{1}{\beta_{k}\beta_{k+1}}\geqslant\beta_{k}+\beta_{k+1}-\dfrac{1}{\beta_{k}}-\dfrac{1}{\beta_{k+1}}.于是

    \prod_{i=1}^{k+1} \beta_{i}-\dfrac{1}{\prod\limits_{i=1}^{k+1} \beta_{i}} \geqslant \sum_{i=1}^{k+1} \beta_{i}-\sum_{i=1}^{k+1} \frac{1}{\beta_{i}}

    等号当且仅当\beta_{1},\beta_{2},\cdots ,\beta_{k-1},\alpha中有k-1个为1,并且\beta_{k}\beta_{k+1}中有一个为1时成立,而这等价于\beta_{1},\cdots ,\beta_{k+1}中有k个为1时成立.

    由上述结论及(1)式可知,形如P\left(x\right)=a_{n}\left(x+1\right)^{n-1}\left(x+\beta\right),a_{n}\ne 0,\beta\geqslant 1的多项式为所有满足条件的多项式.

    2022-01-23-02

    (来源: 数学奥林匹克小丛书 第二版 高中卷 数列与数学归纳法 冯志刚 习题一 P055 习题34)

    P\left(x\right)是一个整系数多项式,满足:对任意n\in \mathbb{N}^{*},都有P\left(n\right)>n并且对任意m\in \mathbb{N}^{*},数列

    P(1),P\left(P\left(1\right)\right),P\left(P\left(P\left(1\right)\right)\right),\cdots

    中都有一项是m的倍数.证明:P\left(x\right)=x+1.

    证明

    x_{1}=1,x_{n+1}=P\left(x_{n}\right),n=1,2,\cdots ,对固定的n\in \mathbb{N}^{*},n\geqslant 2,记x_{n}-1=M,则x_{1}\equiv 1\equiv x_{n}\left(\bmod M\right),从而P\left(x_{1}\right)\equiv P\left(x_{n}\right)\left(\bmod M\right),即x_{2}\equiv x_{n+1}\left(\bmod M\right).这样利用数学归纳法,可证:对任意k\in \mathbb{N}^{*},都有

    x_{k}\equiv x_{n+k-1}\left(\bmod M\right).\qquad(1)

    由条件x_{1},x_{2},\cdots 中有一项为M的倍数,故存在r\in \mathbb{N}^{*},使得x_{r}\equiv 0\left(\bmod M\right).而由(1)知数列\left\{x_{k}\right\}\bmod M的意义下是一个以n-1为周期的数列,故可设1\leqslant r\leqslant n-1.

    现由P\left(n\right)>n,可知x_{1}<x_{2}<\cdots <x_{n},故x_{n-1}\leqslant x_{n}-1=M,进而x_{r}\leqslant M.但M\mid x_{r},故x_{r}=M=x_{n}-1,这要求r=n-1,即x_{n}-1=x_{n-1},所以P\left(x_{n-1}\right)=x_{n}=x_{n-1}+1.由于此式对任意n\geqslant 2都成立,结合\left\{x_{n}\right\}为单调递增数列,知P\left(x\right)=x+1对无穷多个不同的正整数成立.

    所以P\left(x\right)=x+1.

    2022-01-23-03

    (来源: 数学奥林匹克小丛书 第二版 高中卷 数列与数学归纳法 冯志刚 习题一 P055 习题35)

    P\left(x\right)是一个奇次实系数多项式,满足:对任意x\in \mathbb{R},都有

    P\left(x^{2}-1\right)=P\left(x\right)^{2}-1.

    证明:P\left(x\right)=x.

    证明

    由条件,得P\left(-x\right)^{2}-1=P\left(\left(-x\right)^{2}-1\right)=P\left(x^{2}-1\right)=P\left(x\right)^{2}-1,故P\left(x\right)^{2}=P\left(-x\right)^{2}.

    现设P\left(x\right)=a_{2k+1}x^{2k+1}+a_{2k}x^{2k}+\cdots+a_{1}x+a_{0}\left(a_{2k+1}\ne 0\right).

    对比P\left(x\right)^{2}P\left(-x\right)^{2}展开后的各项系数,可得a_{2k}=a_{2k-2}=\cdots=a_{0}=0.

    因此,P\left(x\right)只有非零的奇次项系数,即有P\left(-x\right)=-P\left(x\right).

    从而P\left(0\right)=0,进而

    \left(-1\right)=P\left(0^{2}-1\right)=P\left(0\right)^{2}-1=-1,P\left(1\right)=-P\left(-1\right)=1.

    考虑数列b_{1}=1,b_{n-1}=\sqrt{b_{n}+1},n=1,2,\cdots.

    注意到b_{1}<b_{2}=\sqrt{2}.

    现设b_{n}<b_{n+1},则b_{n}+1<b_{n+1}+1,\sqrt{b_{n}+1}<\sqrt{b_{n+1}+1},即b_{n+1}<b_{n+2}.

    依此由数学归纳法原理知\left\{b_{n}\right\}是一个递增数列.

    另外P\left(b_{1}\right)=P\left(1\right)=1=b_{1},现设P\left(b_{n}\right)=b_{n},则

    P\left(b_{n+1}\right)^{2}=P\left(b_{n+1}^{2}-1\right)+1=P\left(b_{n}\right)+1=b_{n}+1=b_{n+1}^{2}.

    于是P\left(b_{r+1}\right)=\pm b_{n+1},但若P\left(b_{n+1}\right)=-b_{n+1},则P\left(b_{n+2}\right)^{2}=P\left(b_{n+1}\right)+1=1-b_{n+1}=1-\sqrt{b_{n}+1}<0,矛盾.

    P\left(b_{n+1}\right)=b_{n+1}.从而,由数学归纳法原理知,对任意n\in \mathbb{N}^{*},都有P\left(b_{n}\right)=b_{n}.

    综上可知,有无穷多个不同的实数x,使得P\left(x\right)=x.故对任意x,都有P\left(x\right)=x.

    2022-01-23-04

    (来源: 数学奥林匹克小丛书 第二版 高中卷 数列与数学归纳法 冯志刚 习题一 P055 习题36)

    函数f:\mathbb{R}\rightarrow \mathbb{R}满足下述条件:

    (i)对任意实数xy,都有\left|f\left(x\right)-f\left(y\right)\right|\leqslant \left|x-y\right|;

    (ii)存在正整数k使得f^{\left(k\right)}\left(0\right)=0,这里f^{\left(1\right)}\left(x\right)=f\left(x\right),f^{\left(n+1\right)}\left(x\right)=f\left(f^{\left(n\right)}\left(x\right)\right),n=1,2,\cdots.

    证明:f\left(0\right)=0或者f\left(f\left(0\right)\right)=0.

    由(ii),不妨设k是最小的使f^{\left(k\right)}\left(0\right)=0成立的正整数,若k\geqslant 3,则

    \left|f\left(0\right)\right|=\left|f\left(0\right)-0\right|\geqslant \left|f^{\left(2\right)}\left(0\right)-f\left(0\right)\right|\geqslant \cdots \geqslant \left|f^{\left(k\right)}\left(0\right)-f^{\left(k-1\right)}\left(0\right)\right|=\left|f^{\left(k-1\right)}\left(0\right)\right|,

    \left|f^{\left(k-1\right)}\left(0\right)\right|=\left|f^{\left(k-1\right)}\left(0\right)-0\right|\geqslant\left|f^{\left(k\right)}\left(0\right)-f\left(0\right)\right|=\left|f\left(0\right)\right|.所以\left|f\left(0\right)\right|=\left|f^{\left(k-1\right)}\left(0\right)\right|.

    如果f\left(0\right)=f^{\left(k-1\right)}\left(0\right),那么f\left(f\left(0\right)\right)=f^{\left(k\right)}\left(0\right)=0,矛盾.

    如果f\left(0\right)=-f^{\left(k-1\right)}\left(0\right),那么,由(i)可知

    \begin{gathered} |f(0)|=|f(0)+0|=\left|f^{(k)}(0)-f^{(k-1)}(0)\right| \leqslant \\ \left|f^{(k-1)}(0)-f^{(k-2)}(0)\right| \leqslant \cdots \leqslant \\ \left|f^{(2)}(0)-f(0)\right| \leqslant|f(0)-0|=|f(0)| \end{gathered}

    所以,上述不等号全部取等号.

    注意到f\left(0\right),\cdots ,f^{\left(k-1\right)}\left(0\right)都不为零,于是,由方程组

    \left\{\begin{array}{l} \left|f^{(2)}(0)-f(0)\right|=\left|f(0)\right| \\ \left|f^{(3)}(0)-f^{(2)}(0)\right|=\left|f(0)\right| \\ \cdots \\ \left|f^{(k-1)}(0)-f^{(k-2)}(0)\right|=\left|f(0)\right| \end{array}\right.

    可知,对2\leqslant j\leqslant k-1,都有f^{\left(j\right)}\left(0\right)-f^{\left(j-1\right)}\left(0\right)=\pm f\left(0\right),于是f^{\left(2\right)}\left(0\right)=2f\left(0\right),f^{\left(3\right)}\left(0\right)\in \left\{f\left(0\right),3f\left(0\right)\right\},f^{\left(4\right)}\left(0\right)\in \left\{2f\left(0\right),4f\left(0\right)\right\},依次递推,可得f^{\left(k-1\right)}\left(0\right)f\left(0\right)的正整数倍,与f^{\left(k-1\right)}\left(0\right)=-f\left(0\right)矛盾.

    综上可知,命题成立.

    相关文章

      网友评论

        本文标题:高中奥数 2022-01-23

        本文链接:https://www.haomeiwen.com/subject/kzkmhrtx.html