美文网首页
图的运用--路径规划(连通图的生成树)

图的运用--路径规划(连通图的生成树)

作者: 旅行者_sz | 来源:发表于2020-05-06 10:58 被阅读0次

一、概念:

连通图的生成树定义:所谓一个连通图的生成树是一个极小的连通子图,它含有图中全部的n个顶点,但只足以构成一颗树的n-1条边。
连通图的生成树的度判断
1.图是连通图;
2.图中包含了N个顶点;
3.图中边的数量等于N-1条边。

最小生成树
含义:把构成连通网的最小代价的生成树称为最小生成树。

二、最小生成树-普里姆【Prim】算法

算法思路
1.定义2个数组;adjvex 用来保存相关顶点下标;lowcost保存顶点之前的权值;
2.初始化2个数组,从v0开始寻找最小生成树,默认v0是最小生成树上第一个顶点;
3.循环lowcost数组,根据权值,找到顶点k;
4.更新lowcost 数组;
5.循环所有顶点,找到与顶点k有关系的顶点,并更新lowcost数组与adjvex 数组;
注意
更新lowcost 数组与adjvex 数组的条件:
1.与顶点k之间有连接;
2.当前结点j 没有加入过最小生成树;
3.顶点k 与当前顶点j 之间的权值小于顶点j 与其他顶点k 之前的权值,则更新.
简单说就是要比较之前存储的值要小,则更新;

写这么多,来来来,上代码:
1.邻接矩阵图结构
typedef struct
{
    int arc[MAXVEX][MAXVEX];//二维数组
    int numVertexes; //点
    int numEdges;//边
}MGraph;
2.初始化邻接矩阵图
void CreateMGraph(MGraph *G)/* 构件图 */
{
    int i, j;
    
    /* printf("请输入边数和顶点数:"); */
    G->numEdges=15;
    G->numVertexes=9;
    
    for (i = 0; i < G->numVertexes; i++)/* 初始化图 */
    {
        for ( j = 0; j < G->numVertexes; j++)
        {
            if (i==j)
                G->arc[i][j]=0;
            else
                G->arc[i][j] = G->arc[j][i] = INFINITYC;
        }
    }
    
    G->arc[0][1]=10;
    G->arc[0][5]=11;
    G->arc[1][2]=18;
    G->arc[1][8]=12;
    G->arc[1][6]=16;
    G->arc[2][8]=8;
    G->arc[2][3]=22;
    G->arc[3][8]=21;
    G->arc[3][6]=24;
    G->arc[3][7]=16;
    G->arc[3][4]=20;
    G->arc[4][7]=7;
    G->arc[4][5]=26;
    G->arc[5][6]=17;
    G->arc[6][7]=19;
    
    for(i = 0; i < G->numVertexes; i++)
    {
        for(j = i; j < G->numVertexes; j++)
        {
            G->arc[j][i] =G->arc[i][j];
        }
    }
    
}
3.Prim算法生成最小生成树
void MiniSpanTree_Prim(MGraph G)
{
    int min, i, j, k;
    int sum = 0;
    /* 保存相关顶点下标 */
    int adjvex[MAXVEX];
    /* 保存相关顶点间边的权值 */
    int lowcost[MAXVEX];
    
    /* 初始化第一个权值为0,即v0加入生成树 */
    /* lowcost的值为0,在这里就是此下标的顶点已经加入生成树 */
    lowcost[0] = 0;
    
    /* 初始化第一个顶点下标为0 */
    adjvex[0] = 0;
    
    //1. 初始化
    for(i = 1; i < G.numVertexes; i++)    /* 循环除下标为0外的全部顶点 */
    {
        lowcost[i] = G.arc[0][i];    /* 将v0顶点与之有边的权值存入数组 */
        adjvex[i] = 0;                    /* 初始化都为v0的下标 */
    }
    
    //2. 循环除了下标为0以外的全部顶点, 找到lowcost数组中最小的顶点k
    for(i = 1; i < G.numVertexes; i++)
    {
        /* 初始化最小权值为∞, */
        /* 通常设置为不可能的大数字如32767、65535等 */
        min = INFINITYC;
        
        j = 1;k = 0;
        while(j < G.numVertexes)    /* 循环全部顶点 */
        {
            /* 如果权值不为0且权值小于min */
            if(lowcost[j]!=0 && lowcost[j] < min)
            {
                /* 则让当前权值成为最小值,更新min */
                min = lowcost[j];
                /* 将当前最小值的下标存入k */
                k = j;
            }
            j++;
        }
        
        /* 打印当前顶点边中权值最小的边 */
        printf("(V%d, V%d)=%d\n", adjvex[k], k ,G.arc[adjvex[k]][k]);
        sum+=G.arc[adjvex[k]][k];
        
        /* 3.将当前顶点的权值设置为0,表示此顶点已经完成任务 */
        lowcost[k] = 0;
        
        /* 循环所有顶点,找到与顶点k 相连接的顶点
         1. 与顶点k 之间连接;
         2. 该结点没有被加入到生成树;
         3. 顶点k 与 顶点j 之间的权值 < 顶点j 与其他顶点的权值,则更新lowcost 数组;
         
         */
        for(j = 1; j < G.numVertexes; j++)
        {
            /* 如果下标为k顶点各边权值小于此前这些顶点未被加入生成树权值 */
            if(lowcost[j]!=0 && G.arc[k][j] < lowcost[j])
            {
                /* 将较小的权值存入lowcost相应位置 */
                lowcost[j] = G.arc[k][j];
                /* 将下标为k的顶点存入adjvex */
                adjvex[j] = k;
            }
        }
    }
    printf("sum = %d\n",sum);
}

4.输出如下:
最小生成树_Prim算法:
(V0, V1)=10
(V0, V5)=11
(V1, V8)=12
(V8, V2)=8
(V1, V6)=16
(V6, V7)=19
(V7, V4)=7
(V7, V3)=16
sum = 99

最小生成树-克鲁斯卡尔【Kruskal】算法

算法思路

  1. 将邻接矩阵 转化成 边表数组;
  2. 对边表数组根据权值按照从⼩小到⼤大的顺序排序;
  3. 遍历所有的边, 通过parent 数组找到边的连接信息; 避免闭环问题;
  4. 如果不不存在闭环问题,则加⼊入到最⼩小⽣生成树中. 并且修改parent 数组;

上代码,上代码,上代码

1.边表结构
typedef struct
{
    int begin; //起点
    int end;//终点
    int weight;//权值
}Edge ;
2.图的邻接矩阵初始如上(不再重复添加)
3.生成最小生成树
void MiniSpanTree_Kruskal(MGraph G)
{
    int i, j, n, m;
    int sum = 0;
    int k = 0;
    /* 定义一数组用来判断边与边是否形成环路
     用来记录顶点间的连接关系. 通过它来防止最小生成树产生闭环;*/
    
    int parent[MAXVEX];
    /* 定义边集数组,edge的结构为begin,end,weight,均为整型 */
    Edge edges[MAXEDGE];
    
    /*1. 用来构建边集数组*/
    for ( i = 0; i < G.numVertexes-1; i++)
    {
        for (j = i + 1; j < G.numVertexes; j++)
        {
            //如果当前路径权值 != ∞
            if (G.arc[i][j]<INFINITYC)
            {
                //将路径对应的begin,end,weight 存储到edges 边集数组中.
                edges[k].begin = i;
                edges[k].end = j;
                edges[k].weight = G.arc[i][j];
                
                //边集数组计算器k++;
                k++;
            }
        }
    }
    
    //2. 对边集数组排序
    sort(edges, &G);
    
    
    //3.初始化parent 数组为0. 9个顶点;
    // for (i = 0; i < G.numVertexes; i++)
    for (i = 0; i < MAXVEX; i++)
        parent[i] = 0;
    
    //4. 计算最小生成树
    printf("打印最小生成树:\n");
    /* 循环每一条边 G.numEdges 有15条边*/
    for (i = 0; i < G.numEdges; i++)
    {
        //获取begin,end 在parent 数组中的信息;
        //如果n = m ,将begin 和 end 连接,就会产生闭合的环.
        n = Find(parent,edges[i].begin);
        m = Find(parent,edges[i].end);
        //printf("n = %d,m = %d\n",n,m);
        
        /* 假如n与m不等,说明此边没有与现有的生成树形成环路 */
        if (n != m)
        {
            /* 将此边的结尾顶点放入下标为起点的parent中。 */
            /* 表示此顶点已经在生成树集合中 */
            parent[n] = m;
            
            /*打印最小生成树路径*/
            printf("(%d, %d) %d\n", edges[i].begin, edges[i].end, edges[i].weight);
            sum += edges[i].weight;
        }
    }
    
    printf("sum = %d\n",sum);
}
4.边表数据交换(交换权值以及头和尾)
void Swapn(Edge *edges,int i, int j)
{
    int tempValue;
    
    //交换edges[i].begin 和 edges[j].begin 的值
    tempValue = edges[i].begin;
    edges[i].begin = edges[j].begin;
    edges[j].begin = tempValue;
    
    //交换edges[i].end 和 edges[j].end 的值
    tempValue = edges[i].end;
    edges[i].end = edges[j].end;
    edges[j].end = tempValue;
    
    //交换edges[i].weight 和 edges[j].weight 的值
    tempValue = edges[i].weight;
    edges[i].weight = edges[j].weight;
    edges[j].weight = tempValue;
}
5.对权值进行排序
void sort(Edge edges[],MGraph *G)
{
    //对权值进行排序(从小到大)
    int i, j;
    for ( i = 0; i < G->numEdges; i++)
    {
        for ( j = i + 1; j < G->numEdges; j++)
        {
            if (edges[i].weight > edges[j].weight)
            {
                Swapn(edges, i, j);
            }
        }
    }
    
    printf("边集数组根据权值排序之后的为:\n");
    for (i = 0; i < G->numEdges; i++)
    {
        printf("(%d, %d) %d\n", edges[i].begin, edges[i].end, edges[i].weight);
    }
    
}
6.查找连线顶点的尾部下标
//根据顶点f以及parent 数组,可以找到当前顶点的尾部下标; 帮助我们判断2点之间是否存在闭环问题;
int Find(int *parent, int f)
{
    while ( parent[f] > 0)
    {
        f = parent[f];
    }
    return f;
}

7.最小生成树_Kruskal算法输出
边集数组根据权值排序之后的为:
(4, 7) 7
(2, 8) 8
(0, 1) 10
(0, 5) 11
(1, 8) 12
(3, 7) 16
(1, 6) 16
(5, 6) 17
(1, 2) 18
(6, 7) 19
(3, 4) 20
(3, 8) 21
(2, 3) 22
(3, 6) 24
(4, 5) 26
打印最小生成树:
(4, 7) 7
(2, 8) 8
(0, 1) 10
(0, 5) 11
(1, 8) 12
(3, 7) 16
(1, 6) 16
(6, 7) 19
sum = 99

相关文章

网友评论

      本文标题:图的运用--路径规划(连通图的生成树)

      本文链接:https://www.haomeiwen.com/subject/lbdoghtx.html