美文网首页大数据 爬虫Python AI SqlPython小哥哥
用Pandas库实现MySQL数据库的读写 !

用Pandas库实现MySQL数据库的读写 !

作者: 14e61d025165 | 来源:发表于2019-04-27 15:19 被阅读1次

    本次分享将介绍如何在Python中使用Pandas库实现MySQL数据库的读写。首先我们需要了解点ORM方面的知识。

    ORM技术

    对象关系映射技术,即ORM(Object-Relational Mapping)技术,指的是把关系数据库的表结构映射到对象上,通过使用描述对象和数据库之间映射的元数据,将程序中的对象自动持久化到关系数据库中。

    在Python中,最有名的ORM框架是SQLAlchemy。Java中典型的ORM中间件有: Hibernate, ibatis, speedframework。

    SQLAlchemy

    SQLAlchemy是Python编程语言下的一款开源软件。提供了SQL工具包及对象关系映射(ORM)工具,使用MIT许可证发行。

    可以使用pip命令安装SQLAlchemy模块:

    <pre spellcheck="false" style="box-sizing: border-box; margin: 5px 0px; padding: 5px 10px; border: 0px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-variant-numeric: inherit; font-variant-east-asian: inherit; font-weight: 400; font-stretch: inherit; font-size: 16px; line-height: inherit; font-family: inherit; vertical-align: baseline; cursor: text; counter-reset: list-1 0 list-2 0 list-3 0 list-4 0 list-5 0 list-6 0 list-7 0 list-8 0 list-9 0; background-color: rgb(240, 240, 240); border-radius: 3px; white-space: pre-wrap; color: rgb(34, 34, 34); letter-spacing: normal; orphans: 2; text-align: left; text-indent: 0px; text-transform: none; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration-style: initial; text-decoration-color: initial;">pip install sqlalchemy
    </pre>

    python学习扣qun【 1004391443】,内有安装包和学习视频资料免费分享,好友都会在里面交流,分享一些学习的方法和需要注意的小细节,每天也会准时的讲一些项目实战案例,欢迎加入

    SQLAlchemy模块提供了create_engine()函数用来初始化数据库连接,SQLAlchemy用一个字符串表示连接信息:

    <bi style="box-sizing: border-box; display: block;">'数据库类型+数据库驱动名称://用户名:口令@机器地址:端口号/数据库名'</bi>

    Pandas读写MySQL数据库

    我们需要以下三个库来实现Pandas读写MySQL数据库:

    • pandas
    • sqlalchemy
    • pymysql

    其中,pandas模块提供了read_sql_query()函数实现了对数据库的查询,to_sql()函数实现了对数据库的写入,并不需要实现新建MySQL数据表。sqlalchemy模块实现了与不同数据库的连接,而pymysql模块则使得Python能够操作MySQL数据库。

    我们将使用MySQL数据库中的mydb数据库以及employee表,内容如下:

    <tt-image data-tteditor-tag="tteditorTag" contenteditable="false" class="syl1556349526457" data-render-status="finished" data-syl-blot="image" style="box-sizing: border-box; cursor: text; color: rgb(34, 34, 34); font-family: "PingFang SC", "Hiragino Sans GB", "Microsoft YaHei", "WenQuanYi Micro Hei", "Helvetica Neue", Arial, sans-serif; font-size: 16px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: left; text-indent: 0px; text-transform: none; white-space: pre-wrap; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; background-color: rgb(255, 255, 255); text-decoration-style: initial; text-decoration-color: initial; display: block;"> image

    <input class="pgc-img-caption-ipt" placeholder="图片描述(最多50字)" value="" style="box-sizing: border-box; outline: 0px; color: rgb(102, 102, 102); position: absolute; left: 187.5px; transform: translateX(-50%); padding: 6px 7px; max-width: 100%; width: 375px; text-align: center; cursor: text; font-size: 12px; line-height: 1.5; background-color: rgb(255, 255, 255); background-image: none; border: 0px solid rgb(217, 217, 217); border-radius: 4px; transition: all 0.2s cubic-bezier(0.645, 0.045, 0.355, 1) 0s;"></tt-image>

    mydb数据库以及employee表

    下面将介绍一个简单的例子来展示如何在pandas中实现对MySQL数据库的读写:

    <pre spellcheck="false" style="box-sizing: border-box; margin: 5px 0px; padding: 5px 10px; border: 0px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-variant-numeric: inherit; font-variant-east-asian: inherit; font-weight: 400; font-stretch: inherit; font-size: 16px; line-height: inherit; font-family: inherit; vertical-align: baseline; cursor: text; counter-reset: list-1 0 list-2 0 list-3 0 list-4 0 list-5 0 list-6 0 list-7 0 list-8 0 list-9 0; background-color: rgb(240, 240, 240); border-radius: 3px; white-space: pre-wrap; color: rgb(34, 34, 34); letter-spacing: normal; orphans: 2; text-align: left; text-indent: 0px; text-transform: none; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration-style: initial; text-decoration-color: initial;"># -- coding: utf-8 --

    导入必要模块

    import pandas as pd
    from sqlalchemy import create_engine

    初始化数据库连接,使用pymysql模块

    MySQL的用户:root, 密码:147369, 端口:3306,数据库:mydb

    engine = create_engine('mysql+pymysql://root:147369@localhost:3306/mydb')

    查询语句,选出employee表中的所有数据

    sql = '''
    select * from employee;
    '''

    read_sql_query的两个参数: sql语句, 数据库连接

    df = pd.read_sql_query(sql, engine)

    输出employee表的查询结果

    print(df)

    新建pandas中的DataFrame, 只有id,num两列

    df = pd.DataFrame({'id':[1,2,3,4],'num':[12,34,56,89]})

    将新建的DataFrame储存为MySQL中的数据表,不储存index列

    df.to_sql('mydf', engine, index= False)
    print('Read from and write to Mysql table successfully!')
    </pre>

    程序的运行结果如下:

    <tt-image data-tteditor-tag="tteditorTag" contenteditable="false" class="syl1556349526468" data-render-status="finished" data-syl-blot="image" style="box-sizing: border-box; cursor: text; color: rgb(34, 34, 34); font-family: "PingFang SC", "Hiragino Sans GB", "Microsoft YaHei", "WenQuanYi Micro Hei", "Helvetica Neue", Arial, sans-serif; font-size: 16px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: left; text-indent: 0px; text-transform: none; white-space: pre-wrap; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; background-color: rgb(255, 255, 255); text-decoration-style: initial; text-decoration-color: initial; display: block;"> image

    <input class="pgc-img-caption-ipt" placeholder="图片描述(最多50字)" value="" style="box-sizing: border-box; outline: 0px; color: rgb(102, 102, 102); position: absolute; left: 187.5px; transform: translateX(-50%); padding: 6px 7px; max-width: 100%; width: 375px; text-align: center; cursor: text; font-size: 12px; line-height: 1.5; background-color: rgb(255, 255, 255); background-image: none; border: 0px solid rgb(217, 217, 217); border-radius: 4px; transition: all 0.2s cubic-bezier(0.645, 0.045, 0.355, 1) 0s;"></tt-image>

    程序的运行结果

    在MySQL中查看mydf表格:

    <tt-image data-tteditor-tag="tteditorTag" contenteditable="false" class="syl1556349526471" data-render-status="finished" data-syl-blot="image" style="box-sizing: border-box; cursor: text; color: rgb(34, 34, 34); font-family: "PingFang SC", "Hiragino Sans GB", "Microsoft YaHei", "WenQuanYi Micro Hei", "Helvetica Neue", Arial, sans-serif; font-size: 16px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: left; text-indent: 0px; text-transform: none; white-space: pre-wrap; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; background-color: rgb(255, 255, 255); text-decoration-style: initial; text-decoration-color: initial; display: block;"> image

    <input class="pgc-img-caption-ipt" placeholder="图片描述(最多50字)" value="" style="box-sizing: border-box; outline: 0px; color: rgb(102, 102, 102); position: absolute; left: 187.5px; transform: translateX(-50%); padding: 6px 7px; max-width: 100%; width: 375px; text-align: center; cursor: text; font-size: 12px; line-height: 1.5; background-color: rgb(255, 255, 255); background-image: none; border: 0px solid rgb(217, 217, 217); border-radius: 4px; transition: all 0.2s cubic-bezier(0.645, 0.045, 0.355, 1) 0s;"></tt-image>

    mydf表格

    这说明我们确实将pandas中新建的DataFrame写入到了MySQL中!

    将CSV文件写入到MySQL中

    以上的例子实现了使用Pandas库实现MySQL数据库的读写,我们将再介绍一个实例:将CSV文件写入到MySQL中,示例的mpg.CSV文件前10行如下:

    <tt-image data-tteditor-tag="tteditorTag" contenteditable="false" class="syl1556349526475" data-render-status="finished" data-syl-blot="image" style="box-sizing: border-box; cursor: text; color: rgb(34, 34, 34); font-family: "PingFang SC", "Hiragino Sans GB", "Microsoft YaHei", "WenQuanYi Micro Hei", "Helvetica Neue", Arial, sans-serif; font-size: 16px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: left; text-indent: 0px; text-transform: none; white-space: pre-wrap; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; background-color: rgb(255, 255, 255); text-decoration-style: initial; text-decoration-color: initial; display: block;"> image

    <input class="pgc-img-caption-ipt" placeholder="图片描述(最多50字)" value="" style="box-sizing: border-box; outline: 0px; color: rgb(102, 102, 102); position: absolute; left: 187.5px; transform: translateX(-50%); padding: 6px 7px; max-width: 100%; width: 375px; text-align: center; cursor: text; font-size: 12px; line-height: 1.5; background-color: rgb(255, 255, 255); background-image: none; border: 0px solid rgb(217, 217, 217); border-radius: 4px; transition: all 0.2s cubic-bezier(0.645, 0.045, 0.355, 1) 0s;"></tt-image>

    mpg.CSV文件前10行

    示例的Python代码如下:

    <pre spellcheck="false" style="box-sizing: border-box; margin: 5px 0px; padding: 5px 10px; border: 0px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-variant-numeric: inherit; font-variant-east-asian: inherit; font-weight: 400; font-stretch: inherit; font-size: 16px; line-height: inherit; font-family: inherit; vertical-align: baseline; cursor: text; counter-reset: list-1 0 list-2 0 list-3 0 list-4 0 list-5 0 list-6 0 list-7 0 list-8 0 list-9 0; background-color: rgb(240, 240, 240); border-radius: 3px; white-space: pre-wrap; color: rgb(34, 34, 34); letter-spacing: normal; orphans: 2; text-align: left; text-indent: 0px; text-transform: none; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration-style: initial; text-decoration-color: initial;"># -- coding: utf-8 --

    导入必要模块

    import pandas as pd
    from sqlalchemy import create_engine

    初始化数据库连接,使用pymysql模块

    engine = create_engine('mysql+pymysql://root:147369@localhost:3306/mydb')

    读取本地CSV文件

    df = pd.read_csv("E://mpg.csv", sep=',')

    将新建的DataFrame储存为MySQL中的数据表,不储存index列

    df.to_sql('mpg', engine, index= False)
    print("Write to MySQL successfully!")
    </pre>

    在MySQL中查看mpg表格:

    <tt-image data-tteditor-tag="tteditorTag" contenteditable="false" class="syl1556349526485" data-render-status="finished" data-syl-blot="image" style="box-sizing: border-box; cursor: text; color: rgb(34, 34, 34); font-family: "PingFang SC", "Hiragino Sans GB", "Microsoft YaHei", "WenQuanYi Micro Hei", "Helvetica Neue", Arial, sans-serif; font-size: 16px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: left; text-indent: 0px; text-transform: none; white-space: pre-wrap; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; background-color: rgb(255, 255, 255); text-decoration-style: initial; text-decoration-color: initial; display: block;"> image

    <input class="pgc-img-caption-ipt" placeholder="图片描述(最多50字)" value="" style="box-sizing: border-box; outline: 0px; color: rgb(102, 102, 102); position: absolute; left: 187.5px; transform: translateX(-50%); padding: 6px 7px; max-width: 100%; width: 375px; text-align: center; cursor: text; font-size: 12px; line-height: 1.5; background-color: rgb(255, 255, 255); background-image: none; border: 0px solid rgb(217, 217, 217); border-radius: 4px; transition: all 0.2s cubic-bezier(0.645, 0.045, 0.355, 1) 0s;"></tt-image>

    MySQL中的mpg表格

    仅仅5句Python代码就实现了将CSV文件写入到MySQL中,这无疑是简单、方便、迅速、高效的!

    总结

    本文主要介绍了ORM技术以及SQLAlchemy模块,并且展示了两个Python程序的实例,介绍了如何使用Pandas库实现MySQL数据库的读写。程序本身并不难,关键在于多多练习。

    相关文章

      网友评论

        本文标题:用Pandas库实现MySQL数据库的读写 !

        本文链接:https://www.haomeiwen.com/subject/lcjknqtx.html