匈牙利算法

作者: 伊凡vnir | 来源:发表于2017-09-25 18:29 被阅读25次

    算法思想

    算法流程

    算法步骤

    算法实现

    python

    import timeit
    from collections import deque
    #==============================================================================
    # 匈牙利算法
    #==============================================================================
    class HungarianAlgorithm(object):
        def __init__(self,graph):
            """
            @graph:图的矩阵表示
            """
            self.graph=graph
            self.n=len(graph)       
    
        def find(self,x):
            for i in range(self.n):
                if self.graph[x][i]==1 and not self.used[i]:
                    self.used[i]=1#放入交替路
                    if self.match[i]==-1 or self.find(self.match[i])==1:
                        self.match[i]=x
                        self.match[x]=i
                        print(x+1,'->',i+1)
                        return 1
            return 0
            
        def hungarian1(self):
            """递归形式
            """
            self.match=[-1]*self.n#记录匹配情况
            self.used=[False]*self.n#记录是否访问过
            m=0
            for i in range(self.n):
                if self.match[i]==-1:
                    self.used=[False]*self.n
                    print('开始匹配:',i+1)
                    m+=self.find(i)
            return m
        
        def hungarian2(self):
            """循环形式
            """
            match=[-1]*self.n#记录匹配情况
            used=[-1]*self.n#记录是否访问过
            Q=deque()  #设置队列
            ans=0
            prev=[0]*self.n  #代表上一节点
            for i in range(self.n): 
                if match[i]==-1:
                    Q.clear()
                    Q.append(i)
                    prev[i]=-1#设i为出发点
                    flag=False #未找到增广路
                    while len(Q)>0 and not flag:
                        u=Q.popleft()
                        for j in range(self.n):
                            if not flag and self.graph[u][j]==1 and  used[j]!=i:
                                used[j]=i        
                                if match[j]!=-1:
                                    Q.append(match[j])
                                    prev[match[j]]=u#记录点的顺序
                                else:
                                    flag=True
                                    d=u
                                    e=j
                                    while(d!=-1):#将原匹配的边去掉加入原来不在匹配中的边
                                        t=match[d]
                                        match[d]=e
                                        match[e]=d
                                        d=prev[d]
                                        e=t
                                    print('mathch:',match)
                                    print('prev:',prev)
                                    print('deque',Q)
                    if  match[i]!=-1:#新增匹配边
                        ans+=1
            return ans
            
    
    def do1():  
        graph=[(0,0,0,0,1,0,1,0),
           (0,0,0,0,1,0,0,0),
           (0,0,0,0,1,1,0,0),
           (0,0,0,0,0,0,1,1),
           (1,1,1,0,0,0,0,0),
           (0,0,1,0,0,0,0,0),
           (1,0,0,1,0,0,0,0),
           (0,0,0,1,0,0,0,0)]
        h=HungarianAlgorithm(graph)
        print (h.hungarian1())
    
    def do2():  
        graph=[(0,0,0,0,1,0,1,0),
           (0,0,0,0,1,0,0,0),
           (0,0,0,0,1,1,0,0),
           (0,0,0,0,0,0,1,1),
           (1,1,1,0,0,0,0,0),
           (0,0,1,0,0,0,0,0),
           (1,0,0,1,0,0,0,0),
           (0,0,0,1,0,0,0,0)]
        h=HungarianAlgorithm(graph)
        print (h.hungarian2())
    

    算法应用

    相关文章

      网友评论

        本文标题:匈牙利算法

        本文链接:https://www.haomeiwen.com/subject/lkbujxtx.html