美文网首页基因组
主成分分析(PCA)的推导与解释

主成分分析(PCA)的推导与解释

作者: WZFish0408 | 来源:发表于2017-08-14 18:34 被阅读10071次

    前言

    PCA是一种无参数的数据降维方法,在机器学习中很常用,这篇文章主要从三个角度来说明PCA是怎么降维的分别是方差角度,特征值和特征向量以及SVD奇异值分解。

    PCA的推导过程

    推导主要来源于下面网址的这篇文章,是通过方差和协方差矩阵来说明:
    http://blog.codinglabs.org/articles/pca-tutorial.html

    PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降维。

    在上面网址的文章中,从头到尾发明了一遍PCA我觉得很有借鉴意义。我们知道PCA是一种数据降维的方法,在降低维度的过程中,我们当然想要保留更多的特征,PCA就是经过数学推导,保留最多特征同时降维的方法。

    在推导之前要先知道几个基础知识:

    内积与投影

    两个维数相同的向量的内积被定义为:



    现在我们从A点向B所在直线引一条垂线。我们知道垂线与B的交点叫做A在B上的投影,再设A与B的夹角是a,则投影的矢量长度为|A|cos(a),其中|A|是向量A的模,也就是A线段的标量长度。

    到这里还是看不出内积和这东西有什么关系,不过如果我们将内积表示为另一种我们熟悉的形式:


    在代数表示方面,我们经常用线段终点的点坐标表示向量,例如上面的向量可以表示为(3,2),这是我们再熟悉不过的向量表示。

    不过我们常常忽略,只有一个(3,2)本身是不能够精确表示一个向量的。我们仔细看一下,这里的3实际表示的是向量在x轴上的投影值是3,在y轴上的投影值是2。也就是说我们其实隐式引入了一个定义:以x轴和y轴上正方向长度为1的向量为标准。那么一个向量(3,2)实际是说在x轴投影为3而y轴的投影为2。注意投影是一个矢量,所以可以为负。

    更正式的说,向量(x,y)实际上表示线性组合

    T+y(0,1)T)
    不难证明所有二维向量都可以表示为这样的线性组合。此处(1,0)和(0,1)叫做二维空间中的一组基。

    我们之所以默认选择(1,0)和(0,1)为基,当然是比较方便,因为它们分别是x和y轴正方向上的单位向量,因此就使得二维平面上点坐标和向量一一对应,非常方便。但实际上任何两个线性无关的二维向量都可以成为一组基,所谓线性无关在二维平面内可以直观认为是两个不在一条直线上的向量。

    例如,(1,1)和(-1,1)也可以成为一组基。一般来说,我们希望基的模是1,因为从内积的意义可以看到,如果基的模是1,那么就可以方便的用向量点乘基而直接获得其在新基上的坐标了!实际上,对应任何一个向量我们总可以找到其同方向上模为1的向量,只要让两个分量分别除以模就好了。例如,上面的基可以变为(1/√2,1/√2)和(-1/√2,1/√2)

    现在,我们想获得(3,2)在新基上的坐标,即在两个方向上的投影矢量值,那么根据内积的几何意义,我们只要分别计算(3,2)和两个基的内积,不难得到新的坐标为(5/√2,-1/√2)。下图给出了新的基以及(3,2)在新基上坐标值的示意图:


    另外这里要注意的是,我们列举的例子中基是正交的(即内积为0,或直观说相互垂直),但可以成为一组基的唯一要求就是线性无关,非正交的基也是可以的。不过因为正交基有较好的性质,所以一般使用的基都是正交的。

    基变换的矩阵表示

    一般的,如果我们有M个N维向量,想将其变换为由R个N维向量表示的新空间中,那么首先将R个基按行组成矩阵A,然后将向量按列组成矩阵B,那么两矩阵的乘积AB就是变换结果,其中AB的第m列为A中第m列变换后的结果。(新基按行,向量按列)

    特别要注意的是,这里R可以小于N,而R决定了变换后数据的维数。也就是说,我们可以将一N维数据变换到更低维度的空间中去变换后的维度取决于基的数量。因此这种矩阵相乘的表示也可以表示降维变换。

    最后,上述分析同时给矩阵相乘找到了一种物理解释:两个矩阵相乘的意义是将右边矩阵中的每一列列向量变换到左边矩阵中每一行行向量为基所表示的空间中去。更抽象的说,一个矩阵可以表示一种线性变换。很多同学在学线性代数时对矩阵相乘的方法感到奇怪,但是如果明白了矩阵相乘的物理意义,其合理性就一目了然了。

    协方差矩阵与优化目标

    我们从上面的矩阵乘法与基变换可以看出,当新基的维数小于原来的维数时可以做到数据的降维,但是究竟如何选择新基就是我们现在面临的问题,我们想要选择一个维数更小的新基,同时新基保留有更多的信息。我们知道矩阵向新基投影的形式,也就是PCA是将一组N维的特征投影到K维(K<N)同时保留更多的特征。

    那么怎么衡量更多的特征,也就是投影后尽量少的重叠,投影值尽可能分散。

    方差

    这种投影值的分散数学上可以用方差表示。方差公式这里不表,所以PCA现在的问题就变成了,寻找K维的新基,使得数据变换到这组基上后方差值最大。

    协方差

    从二维到一维的降维,只需要找到一个一维基使得方差最大,但是三维降到二维呢?我们需要找到两个基让这个三维数据投影到两个基上,如果我们找方差最大的两个基,会发现他们完全一样或者线性相关,这和一个基没什么区别,不能表达更多的信息,所以我们需要添加限制条件,我们希望这两个基彼此线性无关,扩展到K个基也是一样。

    在数学上使用协方差表示两个向量的相关性,在我们将均值归一化为0后,协方差可以表示为:


    =\frac{1}{m}\sum_{i=1}^{m}a_ib_i)

    m为向量的元素数。可以看到,在字段均值为0的情况下,两个字段的协方差简洁的表示为其内积除以元素数m。

    当协方差为0时,表示两个字段完全独立。为了让协方差为0,我们选择第二个基时只能在与第一个基正交的方向上选择。因此最终选择的两个方向一定是正交的。

    至此,我们得到了降维问题的优化目标:将一组N维向量降为K维(K大于0,小于N),其目标是选择K个单位(模为1)正交基,使得原始数据变换到这组基上后,各字段两两间协方差为0,而字段的方差则尽可能大(在正交的约束下,取最大的K个方差)。

    协方差矩阵

    上面我们导出了优化目标,但是这个目标似乎不能直接作为操作指南(或者说算法),因为它只说要什么,但根本没有说怎么做。所以我们要继续在数学上研究计算方案。

    我们看到,最终要达到的目的与字段内方差及字段间协方差有密切关系。因此我们希望能将两者统一表示,仔细观察发现,两者均可以表示为内积的形式,而内积又与矩阵相乘密切相关。于是我们来了灵感:

    假设我们只有a和b两个特征,那么我们将它们按行组成矩阵X:


    然后我们用X乘以X的转置,并乘上系数1/m:


    这个矩阵对角线上的两个元素分别是两个字段的方差,而其它元素是a和b的协方差。两者被统一到了一个矩阵的。
    根据矩阵相乘的运算法则,这个结论很容易被推广到一般情况:
    设我们有m个n维数据记录,将其按列排成n乘m的矩阵X,设C=1/mXXT,则C是一个对称矩阵,其对角线分别个各个字段的方差,而第i行j列和j行i列元素相同,表示i和j两个字段的协方差。

    协方差矩阵对角化

    根据上述推导,我们发现要达到优化目前,等价于将协方差矩阵对角化:即除对角线外的其它元素化为0,并且在对角线上将元素按大小从上到下排列,这样我们就达到了优化目的。这样说可能还不是很明晰,我们进一步看下原矩阵与基变换后矩阵协方差矩阵的关系:

    设原始数据矩阵X对应的协方差矩阵为C,而P是一组基按行组成的矩阵,设Y=PX,则Y为X对P做基变换后的数据。设Y的协方差矩阵为D,我们推导一下D与C的关系:


    现在事情很明白了!我们要找的P不是别的,而是能让原始协方差矩阵对角化的P。换句话说,优化目标变成了寻找一个矩阵P,满足PCPT是一个对角矩阵,并且对角元素按从大到小依次排列,那么P的前K行就是要寻找的基,用P的前K行组成的矩阵乘以X就使得X从N维降到了K维并满足上述优化条件。

    由上文知道,协方差矩阵C是一个是对称矩阵,在线性代数上,实对称矩阵有一系列非常好的性质:
    1)实对称矩阵不同特征值对应的特征向量必然正交。
    2)设特征向量λ重数为r,则必然存在r个线性无关的特征向量对应于λ,因此可以将这r个特征向量单位正交化。
    由上面两条可知,一个n行n列的实对称矩阵一定可以找到n个单位正交特征向量,设这n个特征向量为e1,e2,...,en,我们将其按列组成矩阵:

    则对协方差矩阵C有如下结论:


    其中Λ为对角矩阵,其对角元素为各特征向量对应的特征值(可能有重复)。以上结论不再给出严格的数学证明,对证明感兴趣的朋友可以参考线性代数书籍关于“实对称矩阵对角化”的内容。
    到这里,我们发现我们已经找到了需要的矩阵P:



    P是协方差矩阵的特征向量单位化后按行排列出的矩阵,其中每一行都是C的一个特征向量。如果设P按照Λ中特征值的从大到小,将特征向量从上到下排列,则用P的前K行组成的矩阵乘以原始数据矩阵X,就得到了我们需要的降维后的数据矩阵Y。
    至此我们完成了整个PCA的数学原理讨论。

    关于PCA的贡献率与K的选择

    在我的文章特征值和特征向量中说过,特征值反映了矩阵对于特征向量的拉伸程度,只有拉伸而没有旋转,也就是在特征向量方向上的作用程度,所以在PCA中我们选取前K个特征向量组成新基进行投影,就是因为原特征在前K个特征向量有最大的作用程度,投影过后可以保留更多的信息,作用程度是用特征值表示的,所以我们可以使用下面的式子表示贡献率,贡献率是表示投影后信息的保留程度的变量,可以用下面的式子表示:


    也就是特征值的总和比上前K个特征值,一般来说贡献率要大于85%。

    关于SVD

    上面的推导中我们看到


    其实就是对于D的奇异值分解。但是其实两者还有一些区别:
    1) SVD可以获取另一个方向上的主成分,而PCA只能获得单个方向上的主成分:


    LSI

    隐语义索引(Latent semantic indexing,简称LSI)通常建立在SVD的基础上,通过低秩逼近达到降维的目的。

    注意到PCA也能达到降秩的目的,但是PCA需要进行零均值化,且丢失了矩阵的稀疏性。

    数值稳定性

    通过SVD可以得到PCA相同的结果,但是SVD通常比直接使用PCA更稳定。因为PCA需要计算XTX的值,对于某些矩阵,求协方差时很可能会丢失一些精度。例如Lauchli矩阵:


    在Lauchli矩阵里,e是很小的数,e2无法用计算机精确表示,从而计算XTX会丢失e这部分信息。

    PCA的步骤

    1)将原始数据按列组成n行m列矩阵X
    2)将X的每一行(代表一个属性字段)进行零均值化,即减去这一行的均值
    3)求出协方差矩阵
    4)求出协方差矩阵的特征值及对应的特征向量
    5)将特征向量按对应特征值大小从上到下按行排列成矩阵,取前k行组成矩阵P
    6)Y=PX即为降维到k维后的数据

    至于练习

    courser里吴恩达的PCA的习题就不错。

    相关文章

      网友评论

        本文标题:主成分分析(PCA)的推导与解释

        本文链接:https://www.haomeiwen.com/subject/lkjerxtx.html