990 Satisfiability of Equality Equations 等式方程的可满足性
Description:
You are given an array of strings equations that represent relationships between variables where each string equations[i] is of length 4 and takes one of two different forms: "xi==yi" or "xi!=yi".Here, xi and yi are lowercase letters (not necessarily different) that represent one-letter variable names.
Return true if it is possible to assign integers to variable names so as to satisfy all the given equations, or false otherwise.
Example:
Example 1:
Input: equations = ["a==b","b!=a"]
Output: false
Explanation: If we assign say, a = 1 and b = 1, then the first equation is satisfied, but not the second.
There is no way to assign the variables to satisfy both equations.
Example 2:
Input: equations = ["b==a","a==b"]
Output: true
Explanation: We could assign a = 1 and b = 1 to satisfy both equations.
Constraints:
1 <= equations.length <= 500
equations[i].length == 4
equations[i][0] is a lowercase letter.
equations[i][1] is either '=' or '!'.
equations[i][2] is '='.
equations[i][3] is a lowercase letter.
题目描述:
给定一个由表示变量之间关系的字符串方程组成的数组,每个字符串方程 equations[i] 的长度为 4,并采用两种不同的形式之一:"a==b" 或 "a!=b"。在这里,a 和 b 是小写字母(不一定不同),表示单字母变量名。
只有当可以将整数分配给变量名,以便满足所有给定的方程时才返回 true,否则返回 false。
示例 :
示例 1:
输入:["a==b","b!=a"]
输出:false
解释:如果我们指定,a = 1 且 b = 1,那么可以满足第一个方程,但无法满足第二个方程。没有办法分配变量同时满足这两个方程。
示例 2:
输入:["b==a","a==b"]
输出:true
解释:我们可以指定 a = 1 且 b = 1 以满足满足这两个方程。
示例 3:
输入:["a==b","b==c","a==c"]
输出:true
示例 4:
输入:["a==b","b!=c","c==a"]
输出:false
示例 5:
输入:["c==c","b==d","x!=z"]
输出:true
提示:
1 <= equations.length <= 500
equations[i].length == 4
equations[i][0] 和 equations[i][3] 是小写字母
equations[i][1] 要么是 '=',要么是 '!'
equations[i][2] 是 '='
思路:
并查集
将相等的元素放在同一个集合中
查找不相等的元素不能在一个集合中
时间复杂度为 O(n), 空间复杂度为 O(1)
代码:
C++:
class Solution
{
public:
bool equationsPossible(vector<string>& equations)
{
vector<int> parent(26);
for (int i = 0; i < 26; i++) parent[i] = i;
for (const auto& e : equations) if (e[1] == '=') parent[find(parent, e[0] - 'a')] = find(parent, e[3] - 'a');
for (const auto& e : equations) if (e[1] == '!') if (find(parent, e[0] - 'a') == find(parent, e[3] - 'a')) return false;
return true;
}
private:
int find(vector<int>& parent, int p)
{
return parent[p] == p ? p : (find(parent, parent[p] = parent[parent[p]]));
}
};
Java:
class Solution {
public boolean equationsPossible(String[] equations) {
int[] parent = new int[26];
for (int i = 0; i < 26; i++) parent[i] = i;
for (String e : equations) if (e.charAt(1) == '=') parent[find(parent, e.charAt(0) - 'a')] = find(parent, e.charAt(3) - 'a');
for (String e : equations) if (e.charAt(1) == '!') if (find(parent, e.charAt(0) - 'a') == find(parent, e.charAt(3) - 'a')) return false;
return true;
}
private int find(int[] parent, int p) {
return parent[p] == p ? p : (find(parent, parent[p] = parent[parent[p]]));
}
}
Python:
class UF:
def __init__(self, n: int) -> None:
self.parent = [i for i in range(n)]
self.weight = [1] * n
self.count = n
def union(self, p: int, q: int) -> None:
"""
连接两个点
:param p: 一个节点
:param q: 另一个节点
:return:
"""
p = self.find(p)
q = self.find(q)
if p == q:
return
if self.weight[p] > self.weight[q]:
self.parent[q] = p
self.weight[p] += self.weight[q]
else:
self.parent[p] = q
self.weight[q] += self.weight[p]
self.count -= 1
def connected(self, p: int, q: int) -> bool:
"""
检查两个点是否在同一分量
:param p: 一个节点
:param q: 另一个节点
:return: 返回两个点是否在同一个分量
"""
return self.find(p) == self.find(q)
def find(self, p: int) -> int:
"""
查找根节点, 并进行路径压缩
:param p: 一个节点
:return: 根节点
"""
while self.parent[p] != p:
self.parent[p] = self.parent[self.parent[p]]
p = self.parent[p]
return p
class Solution:
def equationsPossible(self, equations: List[str]) -> bool:
uf = UF(26)
for e in equations:
if e[1] == '=':
if (p := uf.find(ord(e[0]) - ord('a'))) != (q := uf.find(ord(e[3]) - ord('a'))):
uf.union(p, q)
return all(uf.find(ord(e[0]) - ord('a')) != uf.find(ord(e[3]) - ord('a')) for e in equations if e[1] == '!')
网友评论