美文网首页
PARL QuickStart

PARL QuickStart

作者: vickeex | 来源:发表于2019-09-29 12:25 被阅读0次

github addr: https://github.com/PaddlePaddle/PARL.git
readthedoc addr: https://parl.readthedocs.io/en/latest/index.html

pre intro: fluid program

PARL基于fluid(PaddleFluid)实现,并在program概念上进行逻辑分装。
to be in details

PARL introduction

Model

构建网络(模型),并实现forward方法(前向传播)。一个简单的两层网络模型实现如下。

class CartpoleModel(parl.Model):
    def __init__(self, act_dim):
        act_dim = act_dim
        hid1_size = act_dim * 10

        self.fc1 = layers.fc(size=hid1_size, act='tanh')
        self.fc2 = layers.fc(size=act_dim, act='softmax')

    def forward(self, obs):
        out = self.fc1(obs)
        out = self.fc2(out)
        return out
Algorithm

更新传给它的模型参数。Algorithm需要实现以下方法:

  • __init__ : 定义继承自parl.model的模型,或定义learning_rate, reward_decay, action_demension等超参数.
  • learn : 定义loss函数,并根据loss和数据更新模型参数.
  • predict : 根据当前环境状态预测一个动作.
  • sample : 基于predict方法,生成带噪声的动作,用于某些场景下的动作探索.

parl的algorithms中已实现了多类不同的算法,如PolicyGradient,A2C,A3C,IMPALA等,如下调用即可。

    model = CartpoleModel(act_dim=ACT_DIM)
    alg = parl.algorithms.PolicyGradient(model, lr=LEARNING_RATE)
Agent

将Algorithm作为初始参数传给agent,用于和环境交互并生成训练数据。在Agent类中还需实现以下方法:

  • build_program:定义fluid的program,一般两个实例,分别用于预测和训练.
  • learn:预处理中间数据,并提供给training program.
  • predict:将当前环境状态提供给prediction program并返回执行动作.
  • sample:根据当前状态进行探索(prob决定动作被选取的概率).
class CartpoleAgent(parl.Agent):
    def __init__(self, algorithm, obs_dim, act_dim):
        self.obs_dim = obs_dim
        self.act_dim = act_dim
        super(CartpoleAgent, self).__init__(algorithm)

    def build_program(self):
        self.pred_program = fluid.Program()
        self.learn_program = fluid.Program()

        with fluid.program_guard(self.pred_program):
            obs = layers.data(
                name='obs', shape=[self.obs_dim], dtype='float32')
            self.act_prob = self.alg.predict(obs)

        with fluid.program_guard(self.learn_program):
            obs = layers.data(
                name='obs', shape=[self.obs_dim], dtype='float32')
            act = layers.data(name='act', shape=[1], dtype='int64')
            reward = layers.data(name='reward', shape=[], dtype='float32')
            self.cost = self.alg.learn(obs, act, reward)

    def sample(self, obs):
        obs = np.expand_dims(obs, axis=0)
        act_prob = self.fluid_executor.run(
            self.pred_program,
            feed={'obs': obs.astype('float32')},
            fetch_list=[self.act_prob])[0]
        act_prob = np.squeeze(act_prob, axis=0)
        act = np.random.choice(range(self.act_dim), p=act_prob)
        return act

    def predict(self, obs):
        obs = np.expand_dims(obs, axis=0)
        act_prob = self.fluid_executor.run(
            self.pred_program,
            feed={'obs': obs.astype('float32')},
            fetch_list=[self.act_prob])[0]
        act_prob = np.squeeze(act_prob, axis=0)
        act = np.argmax(act_prob)
        return act

    def learn(self, obs, act, reward):
        act = np.expand_dims(act, axis=-1)
        feed = {
            'obs': obs.astype('float32'),
            'act': act.astype('int64'),
            'reward': reward.astype('float32')
        }
        cost = self.fluid_executor.run(
            self.learn_program, feed=feed, fetch_list=[self.cost])[0]
        return cost

main loop
    env = gym.make("CartPole-v0")
    model = CartpoleModel(act_dim=ACT_DIM)
    alg = parl.algorithms.PolicyGradient(model, lr=LEARNING_RATE)
    agent = CartpoleAgent(alg, obs_dim=OBS_DIM, act_dim=ACT_DIM)
    
    for i in range(1000):
        obs_list, action_list, reward_list = run_episode(env, agent)
        batch_obs, batch_action, batch_reward = ......
        agent.learn(batch_obs, batch_action, batch_reward)

相关文章

  • PARL QuickStart

    github addr: https://github.com/PaddlePaddle/PARL.gitread...

  • PaddlePaddle/PARL 碰到的小问题(一)

    github addr: https://github.com/PaddlePaddle/PARL.gitread...

  • Hibernate

    Bonjour tout le monde, Aujourd'hui, je voudrais vous parl...

  • 2018-05-30

    Reading Angular QuickStart Angular QuickStart Notes ng ad...

  • 【转】kafka搭建

    源文件:http://kafka.apache.org/quickstart Quickstart This tu...

  • flask官方快速指南quickStart

    Quickstart http://flask.pocoo.org/docs/0.12/quickstart/ Q...

  • kafka入门

    #基本操作参考:http://kafka.apache.org/quickstart#quickstart_mul...

  • QuickStart

    Defining Actors and messages Messages can be of arbitrary...

  • Quickstart

    我们将创建一个简单的API,以允许管理员用户查看和编辑系统中的用户和组 Project setup 创建一个叫tu...

  • Quickstart

    原文链接 在几个简单的步骤中启动和运行Flink示例程序。 设置:下载和启动Flink Flink运行在Linux...

网友评论

      本文标题:PARL QuickStart

      本文链接:https://www.haomeiwen.com/subject/lltluctx.html