美文网首页
走马观花-LruCache

走马观花-LruCache

作者: OkCoco | 来源:发表于2018-03-14 18:30 被阅读0次

    LruCache:

    包名:android.support.v4.util

    主要成员变量:

        private final LinkedHashMap<K, V> map;
        private int size;//当前缓存区的大小(根据该大小判断是否执行LRU算法)
        private int maxSize;//缓存区总大小
    
        private int putCount;//执行put()操作的次数
        private int createCount;//执行create的次数
        private int evictionCount;//
        private int hitCount;//get()操作时,通过key直接取到value的次数(key进行哈希映射)
        private int missCount;//get()操作时,通过key没有直接取到value的次数
    

    构造方法:

        public LruCache(int maxSize) {
            if (maxSize <= 0) {
                throw new IllegalArgumentException("maxSize <= 0");
            }
            this.maxSize = maxSize;
            this.map = new LinkedHashMap<K, V>(0, 0.75f, true);
        }
    

    maxSize表示缓存中所能够存储的最大条目数。
    对于LinkerHashMap的构造参数详解:

         public LinkedHashMap(int initialCapacity,
                                 float loadFactor,
                                 boolean accessOrder)
    

    InitialCapacity:初始缓存大小
    loadFactory:加载因子
    accessOrder:false->按照插入顺序排序 true->按照访问顺序排序(get一个元素后,就将该元素取出来保存到链表的最后,实现最近最少调度算法)

    既然内部采用了LinkedHashMap这种数据结构,就表示对数据的处理采用到了链表的get()、put()、remove()等方法:

    put():

        /**
         * Caches {@code value} for {@code key}. The value is moved to the head of
         * the queue.
         * value被移动到队列的头部
         * @return the previous value mapped by {@code key}.
         * 返回key映射的值
         */
        public final V put(K key, V value) {
            //key或value为null都导致空指针
            if (key == null || value == null) {
                throw new NullPointerException("key == null || value == null");
            }
    
            V previous;
            synchronized (this) {
                //put计数自增
                putCount++;
                size += safeSizeOf(key, value);
                //返回上一次的value对应的大小,此时previous已经被value替换掉
                previous = map.put(key, value);
                //由于previous被移除了,故而size也要做对应的删减
                if (previous != null) {
                    size -= safeSizeOf(key, previous);
                }
            }
    
            if (previous != null) {
                //需要重写,默认为空
                entryRemoved(false, key, previous, value);
            }
    
            trimToSize(maxSize);
            return previous;
        }
    

    trimToSize(maxSize);默认maxSize为初始化时赋值,一般取值为Runtime.getRuntime().maxMemory/8

        public void trimToSize(int maxSize) {
            while (true) {
                K key;
                V value;
                synchronized (this) {
                    if (size < 0 || (map.isEmpty() && size != 0)) {
                        throw new IllegalStateException(getClass().getName()
                                + ".sizeOf() is reporting inconsistent results!");
                    }
    
                    //如果当前缓存的大小小于缓存区总大小,直接返回
                    if (size <= maxSize || map.isEmpty()) {
                        break;
                    }
    
                    //缓存区域不够,LRU算法移除头部的value
                    Map.Entry<K, V> toEvict = map.entrySet().iterator().next();
                    key = toEvict.getKey();
                    value = toEvict.getValue();
                    map.remove(key);
                    size -= safeSizeOf(key, value);
                    //eviction次数加1
                    evictionCount++;
                }
                entryRemoved(true, key, value, null);
            }
        }
    

    以上是put()操作的过程:首先,根据key到缓存中找相应的value,找到,进行替换,并把size的只进行相应的改变。将新的value替换oldValue之后,size的值发生了改变,故而,要对缓存区域的大小是否能够容纳新的size做出判断,不能的话将map中的元素根据LRU算法进行移除。

    get(K key):

      public final V get(K key) {
          if (key == null) {
              throw new NullPointerException("key == null");
          }
    
          V mapValue;
          //字节取到value
          synchronized (this) {
              mapValue = map.get(key);
              if (mapValue != null) {
                  hitCount++;
                  return mapValue;
              }
              missCount++;
          }
    
          /*
           * Attempt to create a value. This may take a long time, and the map
           * may be different when create() returns. If a conflicting value was
           * added to the map while create() was working, we leave that value in
           * the map and release the created value.
           */
    
          //create(key)如果不重写的话,直接返回null
          V createdValue = create(key);
          if (createdValue == null) {
              return null;
          }
    
          synchronized (this) {
              createCount++;
              mapValue = map.put(key, createdValue);
              //发生冲突
              if (mapValue != null) {
                  // There was a conflict so undo that last put
                  map.put(key, mapValue);
              } else {
                  size += safeSizeOf(key, createdValue);
              }
          }
    
          if (mapValue != null) {
              entryRemoved(false, key, createdValue, mapValue);
              return mapValue;
          } else {
              trimToSize(maxSize);
              return createdValue;
          }
      }
    

    remove(K key)

    
        /**
         * Removes the entry for {@code key} if it exists.
         *
         * @return the previous value mapped by {@code key}.
         */
        public final V remove(K key) {
            if (key == null) {
                throw new NullPointerException("key == null");
            }
    
            V previous;
            synchronized (this) {
                previous = map.remove(key);
                if (previous != null) {
                    size -= safeSizeOf(key, previous);
                }
            }
    
            if (previous != null) {
                entryRemoved(false, key, previous, null);
            }
    
            return previous;
        }
    

    remove()方法和put()方法大致是一样的。见put()方法分析。

    LruCache采用LinkedHashMap数据结构,双链表的pre和next指针分别指向上一个和下一个node的地址,hash算法保证了存取操作的效率。LinkedHashMap的成员变量accessOrder保证了插入的规则,true是基于访问顺序,这保证了最近操作的元素存放在了链表的末尾,删除的元素都是最久时间未使用的。这种思想值的学习。

    另外看一看accessOrder在LinkedHashMap中的作用:

     void afterNodeAccess(Node<K,V> e) { // move node to last
            LinkedHashMapEntry<K,V> last;
            //将链表的tail赋值给last
            if (accessOrder && (last = tail) != e) {
                //强转e,并给其设置before指针和after指针,分别为b和a
                LinkedHashMapEntry<K,V> p =
                    (LinkedHashMapEntry<K,V>)e, b = p.before, a = p.after;
                p.after = null;
                //若节点e的before不存在,则e的next为链表的头部,因为我们的目标是把节点e断开,然后放到链表的尾部
                if (b == null)
                    head = a;
                else
                    b.after = a;
                //e已经断开,需要把e的before和after再次连接起来,形成一条链
                if (a != null)
                    a.before = b;
                else
                    last = b;
                if (last == null)
                    head = p;
                else {
                    p.before = last;
                    last.after = p;
                }
                tail = p;
                ++modCount;
            }
        }
    

    相关文章

      网友评论

          本文标题:走马观花-LruCache

          本文链接:https://www.haomeiwen.com/subject/lptqqftx.html