svm简介

作者: 一眼的笑意 | 来源:发表于2013-10-06 00:11 被阅读0次
1、 概念

svm(Support Vector Machine,支持向量机)是一种线性分类器,于1995年由Cortes和Vapnik提出,目前已经应用在手写体识别以及文本分类等领域。
  svm建立在统计学习理论中的VC维理论结构风险最小化的基础之上,在模型的复杂度和学习能力之间寻求最佳折衷,以期获得最好的推广能力,所得到的分类器一般是全局最优的。

2、特点
  • 输入样本后将分类器的结果与1/-1比较,大于1或小于-1可确定类属,介于两者之间则不予分类
  • 通过最大化几何间隔来训练分类器,只有支持向量会参数模型训练
  • 对于线性不可分的样本通过映射到高维空间来实现线性可分,这个映射关系不好确定,核函数则很巧妙的解决了这个问题,也正是因为核函数的引入,svm有效的克服了维度之咒

The kernel trick is a method for computing similarity in the transformed space using the original attribute set.

为了克服少量离群点的干扰可在模型中加入松弛变量惩罚因子,对于分布不均的样本,可通过惩罚因子来进行调节。每个样本都有一个松弛变量而惩罚因子则是固定的,需要由用户输入(核函数的参数也需要用户输入,这里就涉及一个参数寻优的问题(网格暴力法、粒子群、启发式))。

  • SVM中的多分类的问题可通过DAG SVM来解决
DAG SVMDAG SVM

这样在分类时,我们就可以先问分类器“1对5”(意思是它能够回答“是第1类还是第5类”),如果它回答5,我们就往左走,再问“2对5”这个分类器,如果它还说是“5”,我们就继续往左走,这样一直问下去,就可以得到分类结果。好处在哪?我们其实只调用了4个分类器(如果类别数是k,则只调用k-1个),分类速度飞快,且没有分类重叠和不可分类现象

  • 时间复杂度
    最坏的是O(Nsv^3),这个还是挺高的

相关文章

  • svm支持向量机

    1.1 svm简介 A Support Vector Machine (SVM) is a discriminat...

  • SVM简介

    SVM的路线梳理  内容包括SVVM学习过程中常见的各种名词概念之间的关系和逻辑线。包括**线性可分,线性不可分,...

  • svm简介

    1、 概念 svm(Support Vector Machine,支持向量机)是一种线性分类器,于1995年由Co...

  • sklearn中随机测试数据:sklearn包中SVM算法库的使

    目录 SVM相关知识点回顾1.1. SVM与SVR1.2. 核函数sklearn中SVM相关库的简介2.1. 分类...

  • SVM算法简介

    1 简介转自http://www.cnblogs.com/jerrylead支持向量机基本上是最好的有监督学习算法...

  • 机器学习之SVM算法

    SVM简介 支持向量机(support vector machines, SVM)是一种二分类模型,它的基本模型是...

  • 机器学习算法_支持向量机SVM(1)

    SVM支持向量机 简介 SVM(support vector machine)是一种二分类模型,它的基本模型是定义...

  • Python机器学习4-线性规划手撕SVM

    一、简介 支持向量机(SVM)是经典的监督学习模型,这篇博文中,将通过线性规划(cvxopt包)展示SVM求解时的...

  • SVM(支持向量机)的原理

    原博文:支持向量机(SVM)入门理解与推导 一、简介 支持向量机(support vector machines)...

  • 7-核支持向量机SVM

    算法简介 支持向量机(Support Vector Machine, SVM)是一类按监督学习(supervise...

网友评论

    本文标题:svm简介

    本文链接:https://www.haomeiwen.com/subject/lshqtttx.html