美文网首页
numpy中的常量

numpy中的常量

作者: meowwzzz | 来源:发表于2018-09-08 11:48 被阅读385次

    Constants

    正无穷

    • numpy.inf
    • numpy.Inf
    • numpy.Infinity
    • numpy.infty
    • numpy.PINF

    IEEE 754 floating point representation of (positive) infinity.

    Use inf because Inf, Infinity, PINF and infty are aliases for inf. For more details, see inf.

    Returns

    • y : float
      A floating point representation of positive infinity.

    Notes
    NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). This means that Not a Number is not equivalent to infinity. Also that positive infinity is not equivalent to negative infinity. But infinity is equivalent to positive infinity.

    Examples

    >>> np.inf
    inf
    >>> np.array([1]) / 0.
    array([ Inf])
    

    负无穷

    • numpy.NINF

    IEEE 754 floating point representation of negative infinity.

    Returns

    • y : float
      A floating point representation of negative infinity.

    Notes
    NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). This means that Not a Number is not equivalent to infinity. Also that positive infinity is not equivalent to negative infinity. But infinity is equivalent to positive infinity.

    Examples

    >>> np.NINF
    -inf
    >>> np.log(0)
    -inf
    

    正零

    • numpy.PZERO

    IEEE 754 floating point representation of positive zero.

    Returns

    • y : float
      A floating point representation of positive zero.

    Notes
    NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). Positive zero is considered to be a finite number.

    Examples

    >>> np.PZERO
    0.0
    >>> np.NZERO
    -0.0
    >>>
    >>> np.isfinite([np.PZERO])
    array([ True])
    >>> np.isnan([np.PZERO])
    array([False])
    >>> np.isinf([np.PZERO])
    array([False])
    

    负零

    • numpy.NZERO

    IEEE 754 floating point representation of negative zero.

    Returns

    • y : float
      A floating point representation of negative zero.

    Notes
    NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). Negative zero is considered to be a finite number.

    Examples

    >>> np.NZERO
    -0.0
    >>> np.PZERO
    0.0
    >>>
    >>> np.isfinite([np.NZERO])
    array([ True])
    >>> np.isnan([np.NZERO])
    array([False])
    >>> np.isinf([np.NZERO])
    array([False])
    

    非数值

    • numpy.NAN
    • numpy.NaN
    • numpy.nan

    IEEE 754 floating point representation of Not a Number (NaN).

    NaN and NAN are equivalent definitions of nan. Please use nan instead of NAN.

    Returns
    y : A floating point representation of Not a Number.

    Notes

    NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). This means that Not a Number is not equivalent to infinity.

    Examples

    >>>
    >>> np.nan
    nan
    >>> np.log(-1)
    nan
    >>> np.log([-1, 1, 2])
    array([        NaN,  0.        ,  0.69314718])
    

    自然常数e

    • numpy.e

    Euler’s constant, base of natural logarithms, Napier’s constant.

    e = 2.71828182845904523536028747135266249775724709369995...

    伽马

    • numpy.euler_gamma

    γ = 0.5772156649015328606065120900824024310421...

    π

    • numpy.pi

    pi = 3.1415926535897932384626433...

    None的别名

    • numpy.newaxis

    A convenient alias for None, useful for indexing arrays.

    Examples

    import numpy as np
    x=np.array([[2,3,5],[5,6,7]],np.int32)
    print(x,"\n\n")
    print(x[np.newaxis,:,:],"\n\n")
    print(x[:,np.newaxis,:],"\n\n")
    print(x[:,:,np.newaxis],"\n\n")
    
    '''
    # 原始的x,形状为(2,3)。
    [[2 3 5]
     [5 6 7]] 
    # 在原先的第一维前面添加了一维,形状变成了(1,2,3)。
    [[[2 3 5]
      [5 6 7]]] 
    # 在原先第二维前面添加了一维,形状变成了(2,1,3)。
    [[[2 3 5]]
     [[5 6 7]]] 
    # 添加第三维,形状变成(2,3,1)
    [[[2]
      [3]
      [5]]
     [[5]
      [6]
      [7]]] 
    '''
    

    相关文章

      网友评论

          本文标题:numpy中的常量

          本文链接:https://www.haomeiwen.com/subject/lspkgftx.html