美文网首页
时间序列-1-随机变量,收敛定理

时间序列-1-随机变量,收敛定理

作者: 蒋子义 | 来源:发表于2020-03-16 19:14 被阅读0次

    Probability Space

    (\Omega,\mathcal{F}, \mathbb{P})
    Here \Omega is a set and \mathcal{F} is a \sigma-algebra (of subsets of X) which satisfies:

    1. \phi \in \mathcal{F}
    2. E \in \mathcal{F} \Rightarrow E^x \in \mathcal{F}
    3. E_1, E_2, .., \in \mathcal{F}\Rightarrow\bigcup_{n=1}^{\infty}E_n \in\mathcal{F}

    \mathbb{P} is a function satisfies:

    1. \mathbb{P}: \mathcal{F} \rightarrow [0,1]
    2. \mathbb{P}(\phi) = 0
    3. \mathbb{P} is countable additive

    Remark:

    1. the sequence of (\Omega,\mathcal{F}, \mathbb{P}) is :\Omega \Rightarrow \mathcal{F}\Rightarrow\mathbb{P}
    2. the difference between Probability measure and general measure is \forall A \in \mathcal{F}, \mathbb{P}(A) is bounded

    Random variable and measurable function

    A function X: \Omega\rightarrow\mathbb{R} is called a random variable if for every x\in\mathbb{R}, the preimage \{ X\le x \} = X^{-1}((-\infty,x]) is an event (belongs to the sigma-field \mathcal{F}).

    Remark:

    1. \mathbb{P}(|X|=\infty)=0. If \mathbb{P}(|X|=\infty)>0, it is a generalized random variable(or random map).

    Lebesgue's montone convergence theorem

    If X_n is a sequence of nonnegative random variadble such that X_n \le X_{n+1} and X_n \rightarrow X a.s. Then
    EX_n \rightarrow EX

    Remark

    1. Since X_n is montonic, it is guaranteed to exist a generalized random variable X that X_n \rightarrow X a.s. It works for the situation that X is a generalized random variable
    2. The montone of X_n guarantees that EX exists(maybe \infty)
    3. Proof:
      1. EX_n\le EX due to X_n \le X a.s.
      2. EX_n\ge EX - \epsilon by using a simple random variable Z controled by X. Prove \lim_n EX_n \le Z\alpha, \alpha is any number less than 1.

    Fatou's lemma

    If X_1, X_2,...,X_n are nonnegative random variables, then
    E\liminf_{n\rightarrow\infty}X_n \le \liminf_{n\rightarrow\infty}EX_n

    1. proof: let Y_n=\inf_{k \ge n}X_k. EY_n \rightarrow E\liminf_{n\rightarrow\infty}X_n \le \liminf_{n\rightarrow\infty}EX_n

    Lebesgue's dominated convergence theorem

    IF \{X_n\} is a sequence of random variable, X_n \rightarrow X a.s. and there exists an intergrable random Y such that |X_n| \le Y, then
    E|X_n-X|\rightarrow 0

    1. proof: Using Fatou's lemma for Z_n = 2Y-|X_n-X|

    Different type of convergence

    1. convergence in distribution
    2. convergence in probability
    3. convergence a.s.
    4. L^p convergence

    Remark

    \begin{aligned} (4) &\Rightarrow (2)\\ (3) &\Rightarrow (2)\\ (2) &\Rightarrow (1)\\ L^p &\Rightarrow L^q (p>q) \end{aligned}

    相关文章

      网友评论

          本文标题:时间序列-1-随机变量,收敛定理

          本文链接:https://www.haomeiwen.com/subject/ltkoehtx.html