除了线性代数之外,概率论(probability theory)也是人工智能研究中必备的数学基础。随着连接主义学派的兴起,概率统计已经取代了数理逻辑,成为人工智能研究的主流工具。在数据爆炸式增长和计算力指数化增强的今天,概率论已经在机器学习中扮演了核心角色。
同线性代数一样,概率论也代表了一种看待世界的方式,其关注的焦点是无处不在的可能性。对随机事件发生的可能性进行规范的数学描述就是概率论的公理化过程。概率的公理化结构体现出的是对概率本质的一种认识。
人工智能数学模型的理论基础——概率论频率学派认为假设是客观存在且不会改变的,即存在固定的先验分布,只是作为观察者的我们无从知晓。因而在计算具体事件的概率时,要先确定概率分布的类型和参数,以此为基础进行概率推演。
相比之下,贝叶斯学派则认为固定的先验分布是不存在的,参数本身也是随机数。换言之,假设本身取决于观察结果,是不确定并且可以修正的。数据的作用就是对假设做出不断的修正,使观察者对概率的主观认识更加接近客观实际。
人工智能数学模型的理论基础——概率论概率论是线性代数之外,人工智能的另一个理论基础,多数机器学习模型采用的都是基于概率论的方法。但由于实际任务中可供使用的训练数据有限,因而需要对概率分布的参数进行估计,这也是机器学习的核心任务。
概率的估计有两种方法:最大似然估计法(maximum likelihood estimation)和最大后验概率法(maximum a posteriori estimation),两者分别体现出频率学派和贝叶斯学派对概率的理解方式。
最大似然估计法的思想是使训练数据出现的概率最大化,依此确定概率分布中的未知参数,估计出的概率分布也就最符合训练数据的分布。最大后验概率法的思想则是根据训练数据和已知的其他条件,使未知参数出现的可能性最大化,并选取最可能的未知参数取值作为估计值。在估计参数时,最大似然估计法只需要使用训练数据,最大后验概率法除了数据外还需要额外的信息,就是贝叶斯公式中的先验概率。
一个优等生和一个差生打架,老师肯定认为是差生的错,因为差生爱惹事,这就是最大似然估计;可如果老师知道优生和差生之间原本就有过节(先验信息),把这个因素考虑进来,就不会简单地认为是差生挑衅,这就是最大后验估计。
从理论的角度来说,频率学派和贝叶斯学派各有千秋,都发挥着不可替代的作用。但具体到人工智能这一应用领域,基于贝叶斯定理的各种方法与人类的认知机制吻合度更高,在机器学习等领域中也扮演着更加重要的角色。
网友评论