Android消息机制底层原理

作者: 黄俊彬 | 来源:发表于2017-03-29 07:39 被阅读439次

    1.概述

    Android的消息机制主要是指Handler的运行机制,Handler的运行需要底层的MessageQueue和Looper的支撑。MessageQueue是消息队列。他的内存存储了一组消息,以队列的形式对外提供插入和删除的工作。他的内部存储结构并不是真正的队列,而是采用单链表的数据结构来存储消息列表。Looper为消息循环,由于MessageQueue只是一个消息的存储单元,它不能去处理消息,而Looper就填补了这个功能,Looper会以无限循环的形式去查找是否有新的消息,如果有的话就处理消息,否则就一直等待,Looper还有一个特殊的概念,那就是ThreadLocal,ThreadLocal并不是线程,它的作用可以在每个线程中存储数据。我们知道,Handler创建的时候会采用当前线程的Looper来构造消息循环系统,那么Handler内部如何获取到当前线程的Looper呢?这就要使用ThreadLocal了,ThreadLocal可以在不同的线程中互不干扰地存储并提供数据,通过ThreadLocal可以轻松获取每个线程的Looper。当然需要注意的是,线程是默认没有Looper的,如果需要使用Handler就必须为线程创建Looper。我们经常提到的主线程,也就是UI线程,它就是ActivityThread,ActivityThread被创建时会初始化Looper,这也是在主线程中默认可以使用Handler的原因。

    2.ThreadLocal-线程局部变量

    ThreadLocal是一个现场内部的数据存储类,通过它可以在指定的线程中存储数据,数据存储以后,只有在指定线程中可以获取到存储的数据。对于Handler来说,它需要获取当前线程的Looper,很显然Looper的作用域就是线程并且不同线程具有不同的Looper,这个时候通过ThreadLocal就可以轻松实现Looper在线程中的存储。ThreadLocal是一个泛型类。


    2.1存储机制

    在localValues内部有一个数组;private Object[]table,ThreadLocal的值就存在这个table数组中,ThreadLocal的值在table数组中的存储位置总是为ThreadLocal的reference字段所标识的对象的下一个位置,比如ThreadLocal的reference对象在table数组中的索引为index,那么ThreadLocal的值在table数组中的索引就是index+1.最终ThreadLocal的值将会被存储在table数组中:table[index+1]=value

    2.put

     void put(ThreadLocal<?> key, Object value) {  
      cleanUp();  
      
      // Keep track of first tombstone. That's where we want to go back  
      // and add an entry if necessary.  
      int firstTombstone = -1;  
      
      for (int index = key.hash & mask;; index = next(index)) {  
      Object k = table[index];  
      
      if (k == key.reference) {  
      // Replace existing entry.  
      table[index + 1] = value;  
      return;  
      }  
      
      if (k == null) {  
      if (firstTombstone == -1) {  
      // Fill in null slot.  
      table[index] = key.reference;  
      table[index + 1] = value;  
      size++;  
      return;  
      }  
      
      // Go back and replace first tombstone.  
      table[firstTombstone] = key.reference;  
      table[firstTombstone + 1] = value;  
      tombstones--;  
      size++;  
      return;  
      }  
      
      // Remember first tombstone.  
      if (firstTombstone == -1 && k == TOMBSTONE) {  
      firstTombstone = index;  
      }  
      }  
      }  
      
    //获取当前线程的数据  
      Values values(Thread current) {  
      return current.localValues;//当前线程存储的数组  
      }  
      
    //初始化当前线程的数据  
    Values initializeValues(Thread current) {  
      return current.localValues = new Values();  
      }  
    

    2.3 set

    public void set(T value) {  
    Thread currentThread = Thread.currentThread();//获取当前的线程  
    Values values = values(currentThread);//  
    if (values == null) {  
    values = initializeValues(currentThread);  
    }  
    values.put(this, value);  
    }  
    3)get
    [java] view plain copy 在CODE上查看代码片派生到我的代码片
    public T get() {  
     // Optimized for the fast path.  
     Thread currentThread = Thread.currentThread();  
     Values values = values(currentThread);  
     if (values != null) {  
     Object[] table = values.table;  
     int index = hash & values.mask;  
     if (this.reference == table[index]) {  
     return (T) table[index + 1];  
     }  
     } else {  
     values = initializeValues(currentThread);  
     }  
      
     return (T) values.getAfterMiss(this);  
     }  
    
    

    从ThreadLocal的set和get方法可以看出,他们所操作的对象都是当前线程localValues对象的table数组,因此在不同线程中访问同一个ThreadLocal的set和get方法,他们对ThreadLocal所做的读写操作仅限于各自线程的内部。

    3.MessageQueue-消息队列

    消息队列在Android中指的是MessageQueue,MessageQueue主要包含两个操作:插入和读取。读取操作本身会伴随着删除操作,插入和读取对应的方法分别为enqueueMessage和next,其中enqueueMessage的作用是往消息队列中 插入一条消息,而next的作用是从消息队列中取出一条消息并将其从消息队列中移除。MessageQueue内部是通过一个单链表的数据结构来维护消息列表,当链表在插入和删除上比较有优势。


    3.1enqueueMessage插入消息

    boolean enqueueMessage(Message msg, long when) {  
      if (msg.target == null) {  
      throw new IllegalArgumentException("Message must have a target.");  
      }  
      if (msg.isInUse()) {  
      throw new IllegalStateException(msg + " This message is already in use.");  
      }  
      
      synchronized (this) {  
      if (mQuitting) {  
      IllegalStateException e = new IllegalStateException(  
      msg.target + " sending message to a Handler on a dead thread");  
      Log.w(TAG, e.getMessage(), e);  
      msg.recycle();  
      return false;  
      }  
      
      msg.markInUse();  
      msg.when = when;  
      Message p = mMessages;  
      boolean needWake;  
      if (p == null || when == 0 || when < p.when) {  
      // New head, wake up the event queue if blocked.  
      msg.next = p;  
      mMessages = msg;  
      needWake = mBlocked;  
      } else {  
      // Inserted within the middle of the queue. Usually we don't have to wake  
      // up the event queue unless there is a barrier at the head of the queue  
      // and the message is the earliest asynchronous message in the queue.  
      needWake = mBlocked && p.target == null && msg.isAsynchronous();  
      Message prev;  
      for (;;) {  
      prev = p;  
      p = p.next;  
      if (p == null || when < p.when) {  
      break;  
      }  
      if (needWake && p.isAsynchronous()) {  
      needWake = false;  
      }  
      }  
      msg.next = p; // invariant: p == prev.next  
      prev.next = msg;  
      }  
      
      // We can assume mPtr != 0 because mQuitting is false.  
      if (needWake) {  
      nativeWake(mPtr);  
      }  
      }  
      return true;  
      }  
    

    3.2 next获取消息

    Message next() {  
    // Return here if the message loop has already quit and been disposed.  
    // This can happen if the application tries to restart a looper after quit  
    // which is not supported.  
    final long ptr = mPtr;  
    if (ptr == 0) {  
    return null;  
    }  
      
    int pendingIdleHandlerCount = -1; // -1 only during first iteration  
    int nextPollTimeoutMillis = 0;  
    for (;;) {  
    if (nextPollTimeoutMillis != 0) {  
    Binder.flushPendingCommands();  
    }  
      
    nativePollOnce(ptr, nextPollTimeoutMillis);  
      
    synchronized (this) {  
    // Try to retrieve the next message. Return if found.  
    final long now = SystemClock.uptimeMillis();  
    Message prevMsg = null;  
    Message msg = mMessages;  
    if (msg != null && msg.target == null) {  
    // Stalled by a barrier. Find the next asynchronous message in the queue.  
    do {  
    prevMsg = msg;  
    msg = msg.next;  
    } while (msg != null && !msg.isAsynchronous());  
    }  
    if (msg != null) {  
    if (now < msg.when) {  
    // Next message is not ready. Set a timeout to wake up when it is ready.  
    nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);  
    } else {  
    // Got a message.  
    mBlocked = false;  
    if (prevMsg != null) {  
    prevMsg.next = msg.next;  
    } else {  
    mMessages = msg.next;  
    }  
    msg.next = null;  
    if (DEBUG) Log.v(TAG, "Returning message: " + msg);  
    msg.markInUse();  
    return msg;  
    }  
    } else {  
    // No more messages.  
    nextPollTimeoutMillis = -1;  
    }  
      
    // Process the quit message now that all pending messages have been handled.  
    if (mQuitting) {  
    dispose();  
    return null;  
    }  
      
    // If first time idle, then get the number of idlers to run.  
    // Idle handles only run if the queue is empty or if the first message  
    // in the queue (possibly a barrier) is due to be handled in the future.  
    if (pendingIdleHandlerCount < 0  
    && (mMessages == null || now < mMessages.when)) {  
    pendingIdleHandlerCount = mIdleHandlers.size();  
    }  
    if (pendingIdleHandlerCount <= 0) {  
    // No idle handlers to run. Loop and wait some more.  
    mBlocked = true;  
    continue;  
    }  
      
    if (mPendingIdleHandlers == null) {  
    mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];  
    }  
    mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);  
    }  
      
    // Run the idle handlers.  
    // We only ever reach this code block during the first iteration.  
    for (int i = 0; i < pendingIdleHandlerCount; i++) {  
    final IdleHandler idler = mPendingIdleHandlers[i];  
    mPendingIdleHandlers[i] = null; // release the reference to the handler  
      
    boolean keep = false;  
    try {  
    keep = idler.queueIdle();  
    } catch (Throwable t) {  
    Log.wtf(TAG, "IdleHandler threw exception", t);  
    }  
      
    if (!keep) {  
    synchronized (this) {  
    mIdleHandlers.remove(idler);  
    }  
    }  
    }  
      
    // Reset the idle handler count to 0 so we do not run them again.  
    pendingIdleHandlerCount = 0;  
      
    // While calling an idle handler, a new message could have been delivered  
    // so go back and look again for a pending message without waiting.  
    nextPollTimeoutMillis = 0;  
    }  
    }  
    

    next方法是一个无限循环的方法,如果消息队列中没有消息,那么next方法会一直堵塞在这里。当有新消息到来时,next方法会返回这条消息并将其从链表中移除

    4.Message- 消息实体

    需要注意Message的一些成员变量
    Handler target; //对应的Handler
    Runnable callback; //对应的回调
    Message next;//单链表引用

    5.Looper-消息循环

    Looper在Android的消息机制中扮演着消息循环的角色,具体来说就是他会不停地从MessageQueue中查看是否有新消息,如果有新消息就会立刻处理,否则就一直阻塞在哪里。



    Looper处理prepare方法外,还提供了prepareMainLooper方法,这个方法主要是给主线程也就是ActivityThread创建Looper使用的,其本质也是通过prepare方法来实现。由于主线程的Looper比较特殊,所以Looper提供一个getMainLooper方法,通过它可以在任何地方获取主线程的Looper。Looper也是可以退出的,Looper提供勒quit和quitSafely来退出一个Looper。quit会直接退出Looper,而quitSafely只是设定一个退出标记,然后把消息队列的已有消息处理完毕后才安全退出。Looper退出后,通过Handler发送的消息会失败,这个时候Handler的send方法会返回false。在子线程,如果手动为其创建了Looper,那么所有的事情完成以后应该调用quit方法来终止消息循环,否则这个子线程就会一直处理等待的状态。
    Looper最重要的一个方法是Loop方法:

    public static void loop() {  
    final Looper me = myLooper();  
    if (me == null) {  
    throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");  
    }  
    final MessageQueue queue = me.mQueue;  
      
    // Make sure the identity of this thread is that of the local process,  
    // and keep track of what that identity token actually is.  
    Binder.clearCallingIdentity();  
    final long ident = Binder.clearCallingIdentity();  
      
    for (;;) {  
    Message msg = queue.next(); // might block  
    if (msg == null) {  
    // No message indicates that the message queue is quitting.  
    return;  
    }  
      
    // This must be in a local variable, in case a UI event sets the logger  
    Printer logging = me.mLogging;  
    if (logging != null) {  
    logging.println(">>>>> Dispatching to " + msg.target + " " +  
    msg.callback + ": " + msg.what);  
    }  
      
    msg.target.dispatchMessage(msg);  
      
    if (logging != null) {  
    logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);  
    }  
      
    // Make sure that during the course of dispatching the  
    // identity of the thread wasn't corrupted.  
    final long newIdent = Binder.clearCallingIdentity();  
    if (ident != newIdent) {  
    Log.wtf(TAG, "Thread identity changed from 0x"  
    + Long.toHexString(ident) + " to 0x"  
    + Long.toHexString(newIdent) + " while dispatching to "  
    + msg.target.getClass().getName() + " "  
    + msg.callback + " what=" + msg.what);  
    }  
      
    msg.recycleUnchecked();  
    }  
    }  
    

    loop方法是一个死循环,唯一跳出循环的方式是MessageQueue的next方法返回了null。当Looper的quit方法被调用时,Looper就会调用MessageQueue的quit或者quitSafely方法来通知消息队列退出,当消息队列被标记为退出状态时,他的next方法会返回null。loop方法会调用MessageQueue的next方法来获取新消息,而next是一个阻塞操作,当没有消息时,next方法会一直阻塞在哪里,这也导致loop方法一直阻塞在哪里。若有新消息,Looper会调用msg。target。dispatchMessage(msg),这里的msg.target是发送这条消息的Handler对象,这样Handler发送的消息最终又交给它的dispatchMessage方法来处理了。但是这里不同的是,Handler的dispatchMessage方法是在创建Handler时所使用的Looper中执行,这样就成功将代码逻辑切换到指定的线程中去执行了。

    6.Handle-消息处理

    Handler的工作主要包含消息的发送和接收过程。消息的发送可以通过post的一系列方法以及send的一系列方法来实现,post的一系列方法最终是通过send的一系列方法来实现的。


    6.1 创建

    使用Handler必须要有Looper,不然会报异常

    public Handler(Callback callback) {  
      this(callback, false);  
      }  
      
      /** 
      * Use the provided {@link Looper} instead of the default one. 
      * 
      * @param looper The looper, must not be null. 
      */  
      public Handler(Looper looper) {  
      this(looper, null, false);  
      }  
      
      public Handler(Callback callback, boolean async) {  
      if (FIND_POTENTIAL_LEAKS) {  
      final Class<? extends Handler> klass = getClass();  
      if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&  
      (klass.getModifiers() & Modifier.STATIC) == 0) {  
      Log.w(TAG, "The following Handler class should be static or leaks might occur: " +  
      klass.getCanonicalName());  
      }  
      }  
      
      mLooper = Looper.myLooper();  
      if (mLooper == null) {  
      throw new RuntimeException(  
      "Can't create handler inside thread that has not called Looper.prepare()");  
      }  
      mQueue = mLooper.mQueue;  
      mCallback = callback;  
      mAsynchronous = async;  
      } 
    

    6.2 发送

    Handler发送消息的过程仅仅是向消息队列中插入了一条消息

    public boolean sendMessageAtTime(Message msg, long uptimeMillis) {  
     MessageQueue queue = mQueue;  
     if (queue == null) {  
     RuntimeException e = new RuntimeException(  
     this + " sendMessageAtTime() called with no mQueue");  
     Log.w("Looper", e.getMessage(), e);  
     return false;  
     }  
     return enqueueMessage(queue, msg, uptimeMillis);  
     }  
    

    6.3 接收

    当消息队列插入消息后,MessageQueue的next方法就会返回这条消息给Looper,Looper收到消息后就开始处理了,最终消息由Looper交由Handler处理

    public interface Callback {  
     public boolean handleMessage(Message msg);  
     }  
      
     /** 
     * Subclasses must implement this to receive messages. 
     */  
     public void handleMessage(Message msg) {  
     }  
      
     /** 
     * Handle system messages here. 
     */  
     public void dispatchMessage(Message msg) {  
     if (msg.callback != null) {  
     handleCallback(msg);  
     } else {  
     if (mCallback != null) {  
     if (mCallback.handleMessage(msg)) {  
     return;  
     }  
     }  
     handleMessage(msg);  
     }  
     }  
    

    7.主线程的消息循环

    Android的主线程就是ActivityThread,主线程的入口方法为main,在main方法中系统会通过Looper.prepareMainLooper()来创建主线程的Looper以及MessageQueue,并通过Looper。loop()来开启主线程的消息循环

    public static void main(String[] args) {  
     Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "ActivityThreadMain");  
     SamplingProfilerIntegration.start();  
      
     // CloseGuard defaults to true and can be quite spammy. We  
     // disable it here, but selectively enable it later (via  
     // StrictMode) on debug builds, but using DropBox, not logs.  
     CloseGuard.setEnabled(false);  
      
     Environment.initForCurrentUser();  
      
     // Set the reporter for event logging in libcore  
     EventLogger.setReporter(new EventLoggingReporter());  
      
     AndroidKeyStoreProvider.install();  
      
     // Make sure TrustedCertificateStore looks in the right place for CA certificates  
     final File configDir = Environment.getUserConfigDirectory(UserHandle.myUserId());  
     TrustedCertificateStore.setDefaultUserDirectory(configDir);  
      
     Process.setArgV0("<pre-initialized>");  
      
     Looper.prepareMainLooper();  
      
     ActivityThread thread = new ActivityThread();  
     thread.attach(false);  
      
     if (sMainThreadHandler == null) {  
     sMainThreadHandler = thread.getHandler();  
     }  
      
     if (false) {  
     Looper.myLooper().setMessageLogging(new  
     LogPrinter(Log.DEBUG, "ActivityThread"));  
     }  
      
     // End of event ActivityThreadMain.  
     Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);  
     Looper.loop();  
      
     throw new RuntimeException("Main thread loop unexpectedly exited");  
     }  
    

    主线程的消息循环开始以后,ActivityThread还需要一个Handler来和消息队列进行交互,这个Handler就是ActivityThread.H,他的内部定义了一组消息类型,主要管理Activity的生命周期及四大组件的启动和停止过程等

     private class H extends Handler {  
      public static final int LAUNCH_ACTIVITY = 100;  
      public static final int PAUSE_ACTIVITY = 101;  
      public static final int PAUSE_ACTIVITY_FINISHING= 102;  
      public static final int STOP_ACTIVITY_SHOW = 103;  
      public static final int STOP_ACTIVITY_HIDE = 104;  
      public static final int SHOW_WINDOW = 105;  
      public static final int HIDE_WINDOW = 106;  
      public static final int RESUME_ACTIVITY = 107;  
      public static final int SEND_RESULT = 108;  
      public static final int DESTROY_ACTIVITY = 109;  
      public static final int BIND_APPLICATION = 110;  
      public static final int EXIT_APPLICATION = 111;  
      public static final int NEW_INTENT = 112;  
      public static final int RECEIVER = 113;  
      public static final int CREATE_SERVICE = 114;  
      public static final int SERVICE_ARGS = 115;  
      public static final int STOP_SERVICE = 116;  
      
      public static final int CONFIGURATION_CHANGED = 118;  
      public static final int CLEAN_UP_CONTEXT = 119;  
      public static final int GC_WHEN_IDLE = 120;  
      public static final int BIND_SERVICE = 121;  
      public static final int UNBIND_SERVICE = 122;  
      public static final int DUMP_SERVICE = 123;  
      public static final int LOW_MEMORY = 124;  
      public static final int ACTIVITY_CONFIGURATION_CHANGED = 125;  
      public static final int RELAUNCH_ACTIVITY = 126;  
      public static final int PROFILER_CONTROL = 127;  
      public static final int CREATE_BACKUP_AGENT = 128;  
      public static final int DESTROY_BACKUP_AGENT = 129;  
      public static final int SUICIDE = 130;  
      public static final int REMOVE_PROVIDER = 131;  
      public static final int ENABLE_JIT = 132;  
      public static final int DISPATCH_PACKAGE_BROADCAST = 133;  
      public static final int SCHEDULE_CRASH = 134;  
      public static final int DUMP_HEAP = 135;  
      public static final int DUMP_ACTIVITY = 136;  
      public static final int SLEEPING = 137;  
      public static final int SET_CORE_SETTINGS = 138;  
      public static final int UPDATE_PACKAGE_COMPATIBILITY_INFO = 139;  
      public static final int TRIM_MEMORY = 140;  
      public static final int DUMP_PROVIDER = 141;  
      public static final int UNSTABLE_PROVIDER_DIED = 142;  
      public static final int REQUEST_ASSIST_CONTEXT_EXTRAS = 143;  
      public static final int TRANSLUCENT_CONVERSION_COMPLETE = 144;  
      public static final int INSTALL_PROVIDER = 145;  
      public static final int ON_NEW_ACTIVITY_OPTIONS = 146;  
      public static final int CANCEL_VISIBLE_BEHIND = 147;  
      public static final int BACKGROUND_VISIBLE_BEHIND_CHANGED = 148;  
      public static final int ENTER_ANIMATION_COMPLETE = 149;  
    }  
    

    另外经常使用的runOnUIThread(Runable action),通过源码分析也是使用了mHandler,而mHandler的Looper也是使用的UI线程的mainLooper。

    public final void runOnUiThread(Runnable action) {  
          if (Thread.currentThread() != mUiThread) {  
              mHandler.post(action);  
          } else {  
              action.run();  
          }  
      }  
    

    相关文章

      网友评论

        本文标题:Android消息机制底层原理

        本文链接:https://www.haomeiwen.com/subject/lvxeottx.html