深度学习是以神经网络为基础的,神经网络是机器学习的一种算法。
关于机器学习中的神经网络:
深度学习(DL)是机器学习中一种基于对数据进行表征学习的方法,是一种能够模拟出人脑的神经结构的机器学习方法。深度学习的概念源于人工神经网络的研究。而人工神经网络ANN(ArTIficial Neural Network)是从信息处理角度对人脑神经元网络进行抽象,建立某种简单模型,按不同的连接方式组成不同的网络,简称为神经网络或类神经网络。因此,深度学习又叫深层神经网络DNN(Deep Neural Networks),是从之前的人工神经网络ANN模型发展而来的。
深度学习是机器学习研究中的一个新领域,其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,比如图像,声音和文本等。深度学习,能让计算机具有人一样的智慧。
同机器学习方法一样,深度机器学习方法也有监督学习与无监督学习之分.不同的学习框架下建立的学习模型很是不同.例如,卷积神经网络(ConvoluTIonalneural networks,简称CNNs)就是一种深度的监督学习下的机器学习模型,而深度置信网(DeepBelief Nets,简称DBNs)就是一种无监督学习下的机器学习模型。
讨论深度学习,肯定会讲到“深度(Depth)”一词,“深度”即层数。从一个输入中产生一个输出所涉及的计算可以通过一个流向图(flowgraph)来表示:流向图是一种能够表示计算的图,在这种图中每一个节点表示一个基本的计算以及一个计算的值,计算的结果被应用到这个节点的子节点的值。考虑这样一个计算集合,它可以被允许在每一个节点和可能的图结构中,并定义了一个函数族。输入节点没有父节点,输出节点没有子节点。这种流向图的一个特别属性是深度(depth):从一个输入到一个输出的最长路径的长度。
深度超过8层的神经网络才叫深度学习。含多个隐层的多层学习模型是深度学习的架构。深度学习可以通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。
深度学习的”深度“是指从”输入层“到”输出层“所经历层次的数目,即”隐藏层“的层数,层数越多,深度也越深。所以越是复杂的选择问题,越需要深度的层次多。除了层数多外,每层”神经元“-黄色小圆圈的数目也要多。例如,AlphaGo的策略网络是13层,每一层的神经元数量为192个。
深度学习可通过学习一种深层非线性网络结构,实现复杂函数逼近,表征输入数据分布式表示,并展现了强大的从少数样本集中学习数据集本质特征的能力。多层的好处是可以用较少的参数表示复杂的函数。
深度学习的实质,是通过构建具有很多隐层的机器学习模型和海量的训练数据,来学习更有用的特征,从而最终提升分类或预测的准确性。因此,“深度模型”是手段,“特征学习”是目的。深度学习强调了模型结构的深度,突出了特征学习的重要性,通过逐层特征变换,将样本在原空间的特征表示变换到一个新特征空间,从而使分类或预测更加容易。与人工规则构造特征的方法相比,利用大数据来学习特征,更能够刻画数据的丰富内在信息。
深度学习是关于自动学习需要建模的数据潜在分布的多层表达的复杂算法。深度学习算法自动的提取分类需要的低层次或者高层次特征。总之,深度学习是用多层次的分析和计算手段,得到结果的一种方法。
深度学习的缺点:只能提供有限数据量的应用场景下,深度学习算法不能够对数据的规律进行无偏差的估计。为了达到很好的精度,需要大数据支撑。由于深度学习中图模型的复杂化导致算法的时间复杂度急剧提升,为了保证算法的实时性,需要更高的并行编程技巧和更多更好的硬件支持。因此,只有一些经济实力比较强大的科研机构或企业,才能够用深度学习来做一些前沿而实用的应用。
深度学习成功应用于计算机视觉、语音识别、记忆网络、自然语言处理等领域。
网友评论