美文网首页
TF2 Keras (11) : 定式化Callback

TF2 Keras (11) : 定式化Callback

作者: 数科每日 | 来源:发表于2021-01-12 08:45 被阅读0次

本文是对官方文档 的学习笔记。


Callback 在 TF2 中是一个非常强大的工具。 例如可以支持 TensorBoard tf.keras.callbacks.TensorBoard 或者定期的保存 Checkpoint.

概览

所有的Callback 函数都继承自keras.callbacks.Callback类。 以下函数可以接受 Callback。

Callback 方法

从下列方法可以看出 Callback 的调用时机都是在一些特定的时间点,Callback就是要在这些时间点完成一些任务。

全局方法

  • on_(train|test|predict)_begin(self, logs=None)
    Called at the beginning of fit/evaluate/predict.

  • on_(train|test|predict)_end(self, logs=None)
    Called at the end of fit/evaluate/predict.

Batch-level methods for training/testing/predicting

  • on_(train|test|predict)_batch_begin(self, batch, logs=None)
    Called right before processing a batch during training/testing/predicting.

  • on_(train|test|predict)_batch_end(self, batch, logs=None)
    Called at the end of training/testing/predicting a batch. Within this method, logs is a dict containing the metrics results.

Epoch-level methods (只针对训练)

  • on_epoch_begin(self, epoch, logs=None)
    Called at the beginning of an epoch during training.

  • on_epoch_end(self, epoch, logs=None)
    Called at the end of an epoch during training.

例子

# Define the Keras model to add callbacks to
def get_model():
    model = keras.Sequential()
    model.add(keras.layers.Dense(1, input_dim=784))
    model.compile(
        optimizer=keras.optimizers.RMSprop(learning_rate=0.1),
        loss="mean_squared_error",
        metrics=["mean_absolute_error"],
    )
    return model
# Load example MNIST data and pre-process it
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()
x_train = x_train.reshape(-1, 784).astype("float32") / 255.0
x_test = x_test.reshape(-1, 784).astype("float32") / 255.0

# Limit the data to 1000 samples
x_train = x_train[:1000]
y_train = y_train[:1000]
x_test = x_test[:1000]
y_test = y_test[:1000]
class CustomCallback(keras.callbacks.Callback):
    def on_train_begin(self, logs=None):
        keys = list(logs.keys())
        print("Starting training; got log keys: {}".format(keys))

    def on_train_end(self, logs=None):
        keys = list(logs.keys())
        print("Stop training; got log keys: {}".format(keys))

    def on_epoch_begin(self, epoch, logs=None):
        keys = list(logs.keys())
        print("Start epoch {} of training; got log keys: {}".format(epoch, keys))

    def on_epoch_end(self, epoch, logs=None):
        keys = list(logs.keys())
        print("End epoch {} of training; got log keys: {}".format(epoch, keys))

    def on_test_begin(self, logs=None):
        keys = list(logs.keys())
        print("Start testing; got log keys: {}".format(keys))

    def on_test_end(self, logs=None):
        keys = list(logs.keys())
        print("Stop testing; got log keys: {}".format(keys))

    def on_predict_begin(self, logs=None):
        keys = list(logs.keys())
        print("Start predicting; got log keys: {}".format(keys))

    def on_predict_end(self, logs=None):
        keys = list(logs.keys())
        print("Stop predicting; got log keys: {}".format(keys))

    def on_train_batch_begin(self, batch, logs=None):
        keys = list(logs.keys())
        print("...Training: start of batch {}; got log keys: {}".format(batch, keys))

    def on_train_batch_end(self, batch, logs=None):
        keys = list(logs.keys())
        print("...Training: end of batch {}; got log keys: {}".format(batch, keys))

    def on_test_batch_begin(self, batch, logs=None):
        keys = list(logs.keys())
        print("...Evaluating: start of batch {}; got log keys: {}".format(batch, keys))

    def on_test_batch_end(self, batch, logs=None):
        keys = list(logs.keys())
        print("...Evaluating: end of batch {}; got log keys: {}".format(batch, keys))

    def on_predict_batch_begin(self, batch, logs=None):
        keys = list(logs.keys())
        print("...Predicting: start of batch {}; got log keys: {}".format(batch, keys))

    def on_predict_batch_end(self, batch, logs=None):
        keys = list(logs.keys())
        print("...Predicting: end of batch {}; got log keys: {}".format(batch, keys))
model = get_model()
model.fit(
    x_train,
    y_train,
    batch_size=128,
    epochs=1,
    verbose=0,
    validation_split=0.5,
    callbacks=[CustomCallback()],
)

res = model.evaluate(
    x_test, y_test, batch_size=128, verbose=0, callbacks=[CustomCallback()]
)

res = model.predict(x_test, batch_size=128, callbacks=[CustomCallback()])

Log Dict

Log Dict 包含了训练中各种 Loss 和 Metrics 值, 他们会在 batch 或者 epoch 之后更新。

class LossAndErrorPrintingCallback(keras.callbacks.Callback):
    def on_train_batch_end(self, batch, logs=None):
        print("For batch {}, loss is {:7.2f}.".format(batch, logs["loss"]))

    def on_test_batch_end(self, batch, logs=None):
        print("For batch {}, loss is {:7.2f}.".format(batch, logs["loss"]))

    def on_epoch_end(self, epoch, logs=None):
        print(
            "The average loss for epoch {} is {:7.2f} "
            "and mean absolute error is {:7.2f}.".format(
                epoch, logs["loss"], logs["mean_absolute_error"]
            )
        )


model = get_model()
model.fit(
    x_train,
    y_train,
    batch_size=128,
    epochs=2,
    verbose=0,
    callbacks=[LossAndErrorPrintingCallback()],
)

res = model.evaluate(
    x_test,
    y_test,
    batch_size=128,
    verbose=0,
    callbacks=[LossAndErrorPrintingCallback()],
)

使用 self.model 属性

除了 log dict 以外, Callback 还可以获得当前执行的Model 对象, 并利用self.model 来获取该对象。

可以利用 self.model 做的事情:

  • 通过 self.model.stop_training = True 停止训练
  • 通过 self.model.optimizer 来修改优化器的超参数(例如: self.model.optimizer.learning_rate)
  • 定期保存模型
  • 在每个时期结束时,在一些测试样本上记录model.predict()的输出,以在训练期间用作检查。
  • 在每个时期结束时提取中间特征的可视化,以监视模型随时间推移正在学习的内容。

Keras Callback 例子

Early Stopping

第一个示例显示了如何通过设置属性self.model.stop_training(boolean)来创建回调,该回调将在达到最小损失时停止训练。

更全面的实现,可以参考 : tf.keras.callbacks.EarlyStopping

import numpy as np


class EarlyStoppingAtMinLoss(keras.callbacks.Callback):
    """Stop training when the loss is at its min, i.e. the loss stops decreasing.

  Arguments:
      patience: Number of epochs to wait after min has been hit. After this
      number of no improvement, training stops.
  """

    def __init__(self, patience=0):
        super(EarlyStoppingAtMinLoss, self).__init__()
        self.patience = patience
        # best_weights to store the weights at which the minimum loss occurs.
        self.best_weights = None

    def on_train_begin(self, logs=None):
        # The number of epoch it has waited when loss is no longer minimum.
        self.wait = 0
        # The epoch the training stops at.
        self.stopped_epoch = 0
        # Initialize the best as infinity.
        self.best = np.Inf

    def on_epoch_end(self, epoch, logs=None):
        current = logs.get("loss")
        if np.less(current, self.best):
            self.best = current
            self.wait = 0
            # Record the best weights if current results is better (less).
            self.best_weights = self.model.get_weights()
        else:
            self.wait += 1
            if self.wait >= self.patience:
                self.stopped_epoch = epoch
                self.model.stop_training = True
                print("Restoring model weights from the end of the best epoch.")
                self.model.set_weights(self.best_weights)

    def on_train_end(self, logs=None):
        if self.stopped_epoch > 0:
            print("Epoch %05d: early stopping" % (self.stopped_epoch + 1))


model = get_model()
model.fit(
    x_train,
    y_train,
    batch_size=64,
    steps_per_epoch=5,
    epochs=30,
    verbose=0,
    callbacks=[LossAndErrorPrintingCallback(), EarlyStoppingAtMinLoss()],
)

调整学习率(learning rate)

这个例子演示了如何动态的调整学习率

callbacks.LearningRateScheduler 提供了一个更加完善的方案。

class CustomLearningRateScheduler(keras.callbacks.Callback):
    """Learning rate scheduler which sets the learning rate according to schedule.

  Arguments:
      schedule: a function that takes an epoch index
          (integer, indexed from 0) and current learning rate
          as inputs and returns a new learning rate as output (float).
  """

    def __init__(self, schedule):
        super(CustomLearningRateScheduler, self).__init__()
        self.schedule = schedule

    def on_epoch_begin(self, epoch, logs=None):
        if not hasattr(self.model.optimizer, "lr"):
            raise ValueError('Optimizer must have a "lr" attribute.')
        # Get the current learning rate from model's optimizer.
        lr = float(tf.keras.backend.get_value(self.model.optimizer.learning_rate))
        # Call schedule function to get the scheduled learning rate.
        scheduled_lr = self.schedule(epoch, lr)
        # Set the value back to the optimizer before this epoch starts
        tf.keras.backend.set_value(self.model.optimizer.lr, scheduled_lr)
        print("\nEpoch %05d: Learning rate is %6.4f." % (epoch, scheduled_lr))


LR_SCHEDULE = [
    # (epoch to start, learning rate) tuples
    (3, 0.05),
    (6, 0.01),
    (9, 0.005),
    (12, 0.001),
]


def lr_schedule(epoch, lr):
    """Helper function to retrieve the scheduled learning rate based on epoch."""
    if epoch < LR_SCHEDULE[0][0] or epoch > LR_SCHEDULE[-1][0]:
        return lr
    for i in range(len(LR_SCHEDULE)):
        if epoch == LR_SCHEDULE[i][0]:
            return LR_SCHEDULE[i][1]
    return lr


model = get_model()
model.fit(
    x_train,
    y_train,
    batch_size=64,
    steps_per_epoch=5,
    epochs=15,
    verbose=0,
    callbacks=[
        LossAndErrorPrintingCallback(),
        CustomLearningRateScheduler(lr_schedule),
    ],
)

TF2 内建 Keras Callbacks

这点要注意,TF2 已经把常见Callbacks 写好了, 对于常见的功能就没必要自己重新发明轮子了。 需要Callback的时候, 先查阅一下 [Callback 参考]
(https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/)

这里给出个TF2.4 的Callback 列表


class BaseLogger: Callback that accumulates epoch averages of metrics.

class CSVLogger: Callback that streams epoch results to a CSV file.

class Callback: Abstract base class used to build new callbacks.

class CallbackList: Container abstracting a list of callbacks.

class EarlyStopping: Stop training when a monitored metric has stopped improving.

class History: Callback that records events into a History object.

class LambdaCallback: Callback for creating simple, custom callbacks on-the-fly.

class LearningRateScheduler: Learning rate scheduler.

class ModelCheckpoint: Callback to save the Keras model or model weights at some frequency.

class ProgbarLogger: Callback that prints metrics to stdout.

class ReduceLROnPlateau: Reduce learning rate when a metric has stopped improving.

class RemoteMonitor: Callback used to stream events to a server.

class TensorBoard: Enable visualizations for TensorBoard.

class TerminateOnNaN: Callback that terminates training when a NaN loss is encountered.

相关文章

网友评论

      本文标题:TF2 Keras (11) : 定式化Callback

      本文链接:https://www.haomeiwen.com/subject/makzoktx.html