美文网首页Linux
linux驱动:[2]字符设备驱动memdev(cdev结构解析

linux驱动:[2]字符设备驱动memdev(cdev结构解析

作者: techping | 来源:发表于2017-05-01 15:35 被阅读62次

    linux驱动:[2]字符设备驱动memdev

    Linux 内存模拟字符设备 驱动程序

    测试平台: Xunlong Orange Pi Zero

    代码一览(解析见下方)

    驱动程序以及Makefile如下:

    • memdev.c:
    #include <linux/module.h>
    #include <linux/types.h>
    #include <linux/fs.h>
    #include <linux/errno.h>
    #include <linux/mm.h>
    #include <linux/sched.h>
    #include <linux/init.h>
    #include <linux/cdev.h>
    #include <asm/io.h>
    #include <linux/slab.h>
    #include <asm/uaccess.h>
    
    #ifndef MEMDEV_MAJOR
    #define MEMDEV_MAJOR 254
    #endif
    
    #ifndef MEMDEV_NR_DEVS
    #define MEMDEV_NR_DEVS 2
    #endif
    
    #ifndef MEMDEV_SIZE
    #define MEMDEV_SIZE 4096
    #endif
    
    struct mem_dev {
        char *data;
        unsigned long size;
    };
    
    static int mem_major = MEMDEV_MAJOR;
    
    module_param(mem_major, int, S_IRUGO);
    
    struct mem_dev *mem_devp;
    
    struct cdev cdev;
    
    int mem_open(struct inode *inode, struct file *filp)
    {
        struct mem_dev *dev;
    
        int num = MINOR(inode->i_rdev);
    
        if (num >= MEMDEV_NR_DEVS)
            return -ENODEV;
        dev = &mem_devp[num];
    
        filp->private_data = dev;
    
        return 0;
    }
    
    int mem_release(struct inode *inode, struct file *filp)
    {
        return 0;
    }
    
    static ssize_t mem_read(struct file *filp, char __user *buf, size_t size, loff_t *poss)
    {
        unsigned long p = *poss;
        unsigned int count = size;
        int ret = 0;
        struct mem_dev *dev = filp->private_data;
    
        if (p >= MEMDEV_SIZE)
            return 0;
        if (count > MEMDEV_SIZE-p)
            count = MEMDEV_SIZE-p;
    
        if(copy_to_user(buf, (void*)(dev->data + p), count)) {
            ret = -EFAULT;
        } else {
            *poss += count;
            ret = count;
            printk(KERN_INFO "read %d bytes from %lu\n", count, p);
        }
    
        return ret;
    }
    
    static ssize_t mem_write(struct file *filp, const char __user *buf, size_t size, loff_t *poss)
    {
        unsigned long p = *poss;
        unsigned int count = size;
        int ret = 0;
        struct mem_dev *dev = filp->private_data;
    
        if (p >= MEMDEV_SIZE)
            return 0;
        if (count > MEMDEV_SIZE-p)
            count = MEMDEV_SIZE - p;
    
        if (copy_from_user(dev->data + p, buf, count)) {
            ret = -EFAULT;
        } else {
            *poss += count;
            ret = count;
            printk(KERN_INFO "write %d bytes from %lu\n", count, p);
        }
    
        return ret;
    }
    
    static loff_t mem_llseek(struct file *filp, loff_t offset, int whence)
    {
        loff_t newpos;
    
        switch (whence) {
        case 0:
            newpos = offset;
            break;
        case 1:
            newpos = filp->f_pos + offset;
            break;
        case 2:
            newpos = MEMDEV_SIZE - 1 + offset;
            break;
        default:
            return -EINVAL;
        }
        if ((newpos < 0) || (newpos > MEMDEV_SIZE))
            return -EINVAL;
    
        filp->f_pos = newpos;
        return newpos;
    }
    
    static const struct file_operations mem_fops =
    {
        .owner = THIS_MODULE,
        .llseek = mem_llseek,
        .read = mem_read,
        .write = mem_write,
        .open = mem_open,
        .release = mem_release,
    };
    
    static int memdev_init(void)
    {
        int result;
        int i;
        dev_t devno = MKDEV(mem_major, 0);
    
        if (mem_major)
            result = register_chrdev_region(devno, 2, "memdev");
        else {
            result = alloc_chrdev_region(&devno, 0, 2, "memdev");
            mem_major = MAJOR(devno);
        }
    
        if (result < 0)
            return result;
    
        cdev_init(&cdev, &mem_fops);
        cdev.owner = THIS_MODULE;
        cdev.ops = &mem_fops;
    
        cdev_add(&cdev, MKDEV(mem_major, 0), MEMDEV_NR_DEVS);
    
        mem_devp = kmalloc(MEMDEV_NR_DEVS * sizeof(struct mem_dev), GFP_KERNEL);
        if (!mem_devp) {
            result = -ENOMEM;
            goto fail_malloc;
        }
    
        memset(mem_devp, 0, MEMDEV_NR_DEVS * sizeof(struct mem_dev));
    
        for (i = 0; i < MEMDEV_NR_DEVS; i++) {
            mem_devp[i].size = MEMDEV_SIZE;
            mem_devp[i].data = kmalloc(MEMDEV_SIZE, GFP_KERNEL);
            memset(mem_devp[i].data, 0, MEMDEV_SIZE);
        }
    
        printk("memdev init success\n");
        return 0;
    
    fail_malloc:
        unregister_chrdev_region(devno, 2);
        return result;
    }
    
    static void memdev_exit(void)
    {
        cdev_del(&cdev);
        kfree(mem_devp);
        unregister_chrdev_region(MKDEV(mem_major, 0), 2);
        printk("memdev exit success\n");
    }
    
    MODULE_AUTHOR("Ziping Chen <techping.chan@gmail.com>");
    MODULE_LICENSE("GPL");
    
    module_init(memdev_init);
    module_exit(memdev_exit);
    
    • Makefile:
    obj-m := memdev.o #编译进模块
    KERNELDIR := /lib/modules/4.11.0-rc4-00064-g89970a0-dirty/build #此处为linux内核库目录
    PWD := $(shell pwd) #获取当前目录
    OUTPUT := $(obj-m) $(obj-m:.o=.ko) $(obj-m:.o=.mod.o) $(obj-m:.o=.mod.c) modules.order Module.symvers
     
    modules:
        $(MAKE) -C $(KERNELDIR) M=$(PWD) modules
    
    clean:
        rm -rf $(OUTPUT)
    

    在shell中使用以下命令装载驱动程序:
    <font color="red">(这里以主设备号为181进行测试)</font>

    $ make
    $ insmod memdev.ko mem_major=181
    $ mknod /dev/memdev0 c 181 0
    

    使用linux c进行测试:

    • memapp.c:
    #include <stdio.h>
    #include <stdlib.h>
    #include <unistd.h>
    #include <fcntl.h>
    #include <string.h>
    
    int main()
    {
        int fd;
        char buf[4096];
    
        strcpy(buf,"memory simulate char device test...\n");
        printf("original buf:%s\n",buf); 
    
        fd = open("/dev/memdev0",O_RDWR);
        if (fd == -1) {
            printf("open memdev failed!\n");
            return -1;
        }
        write(fd, buf, sizeof(buf));
        lseek(fd, 0, SEEK_SET);
        strcpy(buf, "nothing here");
        read(fd, buf, sizeof(buf));
        printf("read buf:%s\n", buf);
    
        return 0;
    }
    

    进行编译、测试:

    $ gcc -o memapp memapp.c
    

    实验成功!


    代码解析:

    一、分配设备号

    if (mem_major)
            result = register_chrdev_region(devno, 2, "memdev");
    else {
            result = alloc_chrdev_region(&devno, 0, 2, "memdev");
            mem_major = MAJOR(devno);
    }
    

    如果定义的参数mem_major不为0(上面测试用了181),则进行静态分配

    register_chrdev_region(devno, 2, "memdev");//静态分配设备号为devno的设备
    

    如果mem_major为0则进行动态分配

    alloc_chrdev_region(&devno, 0, 2, "memdev");//动态分配主设备号为devno,次设备号为0的设备
    

    二、初始化cdev结构

    /linux/include/linux/cdev.h:

    struct cdev {
        struct kobject kobj;//每个 cdev 都是一个 kobject
        struct module *owner;//指向实现驱动的模块
        const struct file_operations *ops;//操纵这个字符设备文件的方法
        struct list_head list;//与 cdev 对应的字符设备文件的 inode->i_devices 的链表头
        dev_t dev;//起始设备编号
        unsigned int count;//设备范围号大小
    };
    

    一个 cdev 一般它有两种定义初始化方式:静态的和动态的。

    静态内存定义初始化:

    struct cdev my_cdev;
    cdev_init(&my_cdev, &fops);
    my_cdev.owner = THIS_MODULE;
    

    动态内存定义初始化:

    struct cdev *my_cdev = cdev_alloc();
    my_cdev->ops = &fops;
    my_cdev->owner = THIS_MODULE;
    

    两种使用方式的功能是一样的,只是使用的内存区不一样,一般视实际的数据结构需求而定。

    源码分析:

    struct cdev *cdev_alloc(void)
    {
       struct cdev *p = kzalloc(sizeof(struct cdev), GFP_KERNEL);
       if (p) {
           INIT_LIST_HEAD(&p->list);
           kobject_init(&p->kobj, &ktype_cdev_dynamic);
       }
       return p;
    }
    
    void cdev_init(struct cdev *cdev, const struct file_operations *fops)
    {
       memset(cdev, 0, sizeof *cdev);
       INIT_LIST_HEAD(&cdev->list);
       kobject_init(&cdev->kobj, &ktype_cdev_default);
       cdev->ops = fops;
    }
    

    可见,两个函数完成都功能基本一致。

    三、添加cdev

    初始化 cdev 后,需要把它添加到系统中去。为此可以调用 cdev_add() 函数。传入 cdev 结构的指针,起始设备编号,以及设备编号范围。

    int cdev_add(struct cdev *p, dev_t dev, unsigned count)
    {
       p->dev = dev;
       p->count = count;
       return kobj_map(cdev_map, dev, count, NULL, exact_match, exact_lock, p);
    }
    

    简单地说,设备驱动程序通过调用cdev_add把它所管理的设备对象的指针嵌入到一个类型为struct probe的节点之中,然后再把该节点加入到cdev_map所实现的哈希链表中。

    对系统而言,当设备驱动程序成功调用了cdev_add之后,就意味着一个字符设备对象已经加入到了系统,在需要的时候,系统就可以找到它。对用户态的程序而言,cdev_add调用之后,就已经可以通过文件系统的接口调用到我们的驱动程序。

    四、卸载cdev

    当一个字符设备驱动不再需要的时候(比如模块卸载),就可以用 cdev_del() 函数来释放 cdev 占用的内存。

    void cdev_del(struct cdev *p)
    {
       cdev_unmap(p->dev, p->count);
       kobject_put(&p->kobj);
    }
    

    其中 cdev_unmap() 调用 kobj_unmap() 来释放 cdev_map 散列表中的对象。kobject_put() 释放 cdev 结构本身。


    相关文章

      网友评论

        本文标题:linux驱动:[2]字符设备驱动memdev(cdev结构解析

        本文链接:https://www.haomeiwen.com/subject/mdaftxtx.html