美文网首页
【Java】Map的相关总结和源码注释

【Java】Map的相关总结和源码注释

作者: y4ngyy | 来源:发表于2020-03-02 20:21 被阅读0次

    前言

    Map为一个Java中一个重要的数据结构,主要表示<key, value>的映射关系对。本文包括了相关Map数据结构的总结和源码的阅读注释。

    HashMap

    初始化,可以选择第二个初始化函数来设置装载能力threshold和装载系数loadFactor

    • HashMap()
    • HashMap(int initialCapacity, float loadFactor)

    HashMap中定义的一些常量:

    • static final int DEFAULT_INITIAL_CAPACITY = 1 << 4;

      缺省的初始大小

    • static final int MAXIMUM_CAPACITY = 1 << 30;

      最大限定大小,当超过这个值时,会resize()Integer.MAX_VALUE

    • static final float DEFAULT_LOAD_FACTOR = 0.75f;

      threshold = capacity*laodFactor

    HashMap的大小始终为2的倍数,若插入时超过threshold时,会调用resize()来自动将大小扩大一倍。

    值在Node<K,V>[] table中的定位方式为(n-1)&hash(key)这也是resize的时候直接double的原因

    基本方法:

    • V put(K key, V value):若key不存在,则插入;若key存在,则更新value值,返回旧的value
    • V putIfAbsent(K key, V value)
    • V get(Object key):get不存在的key时会返回null,需要注意NullPointerException
    • int size()

    遍历方式

    • forEach(lambda)通过lambda表达式进行遍历

    • entrySet().iterator()

      Iterator iter = map.entrySet().iterator();
      while(iter.hasNext()){
        Map.Entry e = (Map.Entry)iter.next();
          key = e.getKey();
          value = e.getValue();
      }
      
    • keySet().iterator()

      Iterator iter = map.keySet().iterator();
      while(iter.hasNext()){
          key = iter.next();
          value = map.get(key);
      }
      
    • values().iterator()

    resize()

    final Node<K,V>[] resize() {
        Node<K,V>[] oldTab = table;
        int oldCap = (oldTab == null) ? 0 : oldTab.length;
        int oldThr = threshold;
        int newCap, newThr = 0;
        if (oldCap > 0) {
            if (oldCap >= MAXIMUM_CAPACITY) { // 旧的大小已经达到设置的最大值时不再增加,改变阈值
                threshold = Integer.MAX_VALUE;
                return oldTab;
            }
            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY && // 新大小=旧大小*2
                     oldCap >= DEFAULT_INITIAL_CAPACITY)
                newThr = oldThr << 1; // 阈值也一起*2
        }
        else if (oldThr > 0) // initial capacity was placed in threshold
            newCap = oldThr;
        else {               // oldCap为0时处于初始化阶段,进行初始化
            newCap = DEFAULT_INITIAL_CAPACITY;
            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
        }
        if (newThr == 0) {
            float ft = (float)newCap * loadFactor;
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                      (int)ft : Integer.MAX_VALUE);
        }
        threshold = newThr;
        @SuppressWarnings({"rawtypes","unchecked"})
        Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
        table = newTab;
        if (oldTab != null) { // 将旧map移到新map中
            for (int j = 0; j < oldCap; ++j) {
                Node<K,V> e;
                if ((e = oldTab[j]) != null) {
                    oldTab[j] = null; // 置为null值方便GC
                    if (e.next == null) // 桶中没有链,直接赋值
                        newTab[e.hash & (newCap - 1)] = e;
                    else if (e instanceof TreeNode) // 如果桶中为红黑树
                        ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                    else { // preserve order
                        Node<K,V> loHead = null, loTail = null;
                        Node<K,V> hiHead = null, hiTail = null;
                        Node<K,V> next;
                        do {
                            next = e.next;
                            if ((e.hash & oldCap) == 0) { // 若为真,则在原来位置不变
                                if (loTail == null)
                                    loHead = e;
                                else
                                    loTail.next = e;
                                loTail = e;
                            }
                            else {  // 为假时说明扩容后原链表中的节点位置发生了改变
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                        } while ((e = next) != null);
                        if (loTail != null) {
                            loTail.next = null;
                            newTab[j] = loHead; // 原链表所在
                        }
                        if (hiTail != null) {
                            hiTail.next = null;
                            newTab[j + oldCap] = hiHead; // 扩容部分节点位置加上了oldCap
                        }
                    }
                }
            }
        }
        return newTab;
    }
    

    冲突解决

    final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
        Node<K,V>[] tab; Node<K,V> p; int n, i;
        if ((tab = table) == null || (n = tab.length) == 0)
            n = (tab = resize()).length; // 数组为空的情况
        if ((p = tab[i = (n - 1) & hash]) == null)
            tab[i] = newNode(hash, key, value, null); // 没有冲突直接放入
        else {
            Node<K,V> e; K k;
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                e = p;  // 有冲突但是key相同,则覆盖原来的值
            else if (p instanceof TreeNode)
                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value); // 如果已经拉成红黑树则插入树中
            else {
                for (int binCount = 0; ; ++binCount) {
                    if ((e = p.next) == null) {
                        p.next = newNode(hash, key, value, null); // 找到链表尾插入链表中
                        if (binCount >= TREEIFY_THRESHOLD - 1) // 如果桶的链长度超过阈值则拉成红黑树
                            treeifyBin(tab, hash);
                        break;
                    }
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        break; // 在链中找到相同的key则覆盖其值
                    p = e;
                }
            }
            if (e != null) { // existing mapping for key
                V oldValue = e.value;
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;
                afterNodeAccess(e);
                return oldValue;
            }
        }
        ++modCount;
        if (++size > threshold)
            resize();
        afterNodeInsertion(evict);
        return null;
    }
    

    Hashtable

    初始化函数:

    public Hashtable() {
        this(11, 0.75f);
    }
    

    默认下initialCapacity = 11loadFactor = 0.75

    插入操作put(K,V)

    public synchronized V put(K key, V value) {
        // Make sure the value is not null
        if (value == null) {
            throw new NullPointerException();
        }
    
        // Makes sure the key is not already in the hashtable.
        Entry<?,?> tab[] = table;
        int hash = key.hashCode();
        int index = (hash & 0x7FFFFFFF) % tab.length;
        @SuppressWarnings("unchecked")
        Entry<K,V> entry = (Entry<K,V>)tab[index];
        for(; entry != null ; entry = entry.next) {
            if ((entry.hash == hash) && entry.key.equals(key)) { // 找到相同的key则覆盖原值
                V old = entry.value;
                entry.value = value;
                return old;
            }
        }
    
        addEntry(hash, key, value, index);
        return null;
    }
    

    Hashtable的hash寻址方法为(hash & 0x7FFFFFFF) % tab.length,当插入的key之前有值时返回旧值,否则返回null。

    addEntry(hash, key, value, index),当table的大小不够时,执行rehash()扩大table

    private void addEntry(int hash, K key, V value, int index) {
        Entry<?,?> tab[] = table;
        if (count >= threshold) {
            // Rehash the table if the threshold is exceeded
            rehash();
    
            tab = table;
            hash = key.hashCode();
            index = (hash & 0x7FFFFFFF) % tab.length;
        }
    
        // Creates the new entry.
        @SuppressWarnings("unchecked")
        Entry<K,V> e = (Entry<K,V>) tab[index];
        tab[index] = new Entry<>(hash, key, value, e);
        count++;
        modCount++;
    }
    

    rehash():

    protected void rehash() {
        int oldCapacity = table.length;
        Entry<?,?>[] oldMap = table;
    
        // overflow-conscious code
        int newCapacity = (oldCapacity << 1) + 1; // 新大小=原大小*2+1
        if (newCapacity - MAX_ARRAY_SIZE > 0) {
            if (oldCapacity == MAX_ARRAY_SIZE)
                // Keep running with MAX_ARRAY_SIZE buckets
                return;
            newCapacity = MAX_ARRAY_SIZE;
        }
        Entry<?,?>[] newMap = new Entry<?,?>[newCapacity];
    
        modCount++;
        threshold = (int)Math.min(newCapacity * loadFactor, MAX_ARRAY_SIZE + 1); // 更新阈值
        table = newMap;
    
        for (int i = oldCapacity ; i-- > 0 ;) { // 将旧map中的值一道新map
            for (Entry<K,V> old = (Entry<K,V>)oldMap[i] ; old != null ; ) {
                Entry<K,V> e = old;
                old = old.next;
    
                int index = (e.hash & 0x7FFFFFFF) % newCapacity;
                e.next = (Entry<K,V>)newMap[index];
                newMap[index] = e;
            }
        }
    }
    

    与HashMap的区别

    • HashMap 继承自AbstractMap类,Hashtable继承自Dictionary类

    • Hashtable中的方法均用sychronized关键字修饰,为线程安全

    • 扩容方法不同,HashMap直接double,使得大小始终是2的倍数,Hashtable在double后加1

    • 在table中的查找方式不同:HashMap为hash&(n-1),Hashtable为(hash & 0x7FFFFFFF) % tab.length

    TreeMap

    TreeMap的本质是红黑树,红黑树是一种特殊的二叉查找树,所以TreeMap中的节点都是有序的。

    TreeMap中节点Entry的定义为

    static final class Entry<K,V> implements Map.Entry<K,V> {
        K key;
        V value;
        Entry<K,V> left;
        Entry<K,V> right;
        Entry<K,V> parent;
        boolean color = BLACK;
    }
    

    初始化函数:

    public TreeMap() {
        comparator = null;
    }
    public TreeMap(Comparator<? super K> comparator) {
        this.comparator = comparator;
    }
    

    TreeMap支持自定义的比较器,若是使用空初始化函数,则默认为key的自然顺序

     /**
         * The comparator used to maintain order in this tree map, or
         * null if it uses the natural ordering of its keys.
         *
         * @serial
         */
    private final Comparator<? super K> comparator;
    

    插入操作put(K,V)

    public V put(K key, V value) {
        Entry<K,V> t = root;
        if (t == null) { // root为空则直接new
            compare(key, key); // type (and possibly null) check
    
            root = new Entry<>(key, value, null);
            size = 1;
            modCount++;
            return null;
        }
        int cmp;
        Entry<K,V> parent;
        // split comparator and comparable paths
        Comparator<? super K> cpr = comparator;
        if (cpr != null) { // 自定义comparator时
            do {
                parent = t;
                cmp = cpr.compare(key, t.key);
                if (cmp < 0)
                    t = t.left;
                else if (cmp > 0)
                    t = t.right;
                else
                    return t.setValue(value);   // 如果key相等则直接覆盖value
            } while (t != null);
        }
        else {  // 使用key的comparable接口
            if (key == null)
                throw new NullPointerException();
            @SuppressWarnings("unchecked")
            Comparable<? super K> k = (Comparable<? super K>) key;
            do {
                parent = t;
                cmp = k.compareTo(t.key);
                if (cmp < 0)
                    t = t.left;
                else if (cmp > 0)
                    t = t.right;
                else
                    return t.setValue(value); //找到相同的key则直接覆盖value返回
            } while (t != null);
        }
        Entry<K,V> e = new Entry<>(key, value, parent); // 插入节点
        if (cmp < 0)
            parent.left = e;
        else
            parent.right = e;
        fixAfterInsertion(e); // 红黑树自平衡过程
        size++;
        modCount++;
        return null;
    }
    

    插入后红黑树的自平衡过程:

    private void fixAfterInsertion(Entry<K,V> x) {
        x.color = RED; // 设插入节点的颜色为红
    
        while (x != null && x != root && x.parent.color == RED) { // 当x.parent为黑时树已经平衡
            if (parentOf(x) == leftOf(parentOf(parentOf(x)))) { // x.parent是祖父节点的左子节点
                Entry<K,V> y = rightOf(parentOf(parentOf(x))); // x的uncle节点
                if (colorOf(y) == RED) { // uncle为红的时候recolor
                    setColor(parentOf(x), BLACK);
                    setColor(y, BLACK);
                    setColor(parentOf(parentOf(x)), RED);
                    x = parentOf(parentOf(x)); // 向上变色直到满足平衡条件
                } else { // uncle为黑的时候则需要rotate
                    if (x == rightOf(parentOf(x))) { // 左右的情况,向左旋转
                        x = parentOf(x);
                        rotateLeft(x);
                    }
                    setColor(parentOf(x), BLACK);
                    setColor(parentOf(parentOf(x)), RED);
                    rotateRight(parentOf(parentOf(x)));
                }
            } else {
                Entry<K,V> y = leftOf(parentOf(parentOf(x)));
                if (colorOf(y) == RED) {
                    setColor(parentOf(x), BLACK);
                    setColor(y, BLACK);
                    setColor(parentOf(parentOf(x)), RED);
                    x = parentOf(parentOf(x));
                } else {
                    if (x == leftOf(parentOf(x))) { // 右左的情况,向右旋转
                        x = parentOf(x);
                        rotateRight(x);
                    }
                    setColor(parentOf(x), BLACK);
                    setColor(parentOf(parentOf(x)), RED);
                    rotateLeft(parentOf(parentOf(x)));
                }
            }
        }
        root.color = BLACK;
    }
    

    如有不对请多多指正😝

    相关文章

      网友评论

          本文标题:【Java】Map的相关总结和源码注释

          本文链接:https://www.haomeiwen.com/subject/meobkhtx.html