美文网首页
Phoenix调优参数

Phoenix调优参数

作者: mrknowledge | 来源:发表于2020-04-26 18:03 被阅读0次

    Phoenix:

    phoenix.connection.consistency

    HBase:

    hbase.tmp.dir   

    hbase.local.dir   

    hbase.regionserver.handler.count 3*48   

    hbase.ipc.server.callqueue.handler.factor   

    hbase.ipc.server.callqueue.read.ratio   

    hbase.ipc.server.callqueue.scan.ratio   

    hbase.client.write.buffer 2097152*4   

    hbase.client.max.perserver.tasks   

    hbase.client.max.perregion.tasks   

    hbase.client.localityCheck.threadPoolSize

    hbase-site.xml

    <property> 

        <name>hbase.ipc.client.tcpnodelay</name> 

        <value>true</value>

    </property> 

    <property> 

        <name>hbase.ipc.server.tcpnodelay</name> 

        <value>true</value> 

    </property> 

    <property> 

        <name>dfs.client.read.shortcircuit</name> 

        <value>true</value>

    </property> 

    <property> 

        <name>dfs.client.read.shortcircuit.skip.checksum</name> 

        <value>true</value>

    </property> 

    <property> 

        <name>dfs.namenode.avoid.read.stale.datanode</name>

        <value>true</value>

    </property> 

    <property> 

        <name>dfs.namenode.avoid.write.stale.datanode</name>

        <value>true</value>

    </property> 

    <property> 

        <name>dfs.namenode.stale.datanode.interval</name>

        <value>60000</value>

    </property>

    <property> 

        <name>dfs.namenode.write.stale.datanode.ratio</name>

        <value>0.3f</value>

    </property>

    hdfs相关配置:

    dfs.datanode.synconclose 设为true,当为false时,系统重启或断电时有可能数据丢失,默认值是false。

    当写操作完成之后,缓存中的block不会立即被写入磁盘,如果要同步将缓存的block写入磁盘,用户需要将“hdfs-site.xml”中的dfs.datanode.synconclose设置为true。更改此设置后,对性能可能存在影响。

    dfs.datanode.sync.behind.writes=FALSE 如果是true,写之后,DN将指示操作系统把队列中的数据全部立即写磁盘。和常用的OS策略不同,它们可能在触发写磁盘之前等待30 

    sdfs.namenode.avoid.write.stale.datanode —— default: true 

    dfs.namenode.avoid.read.stale.datanode —— default: true 

    dfs.namenode.stale.datanode.interval —— default: 30 seconds 

    默认是true,超过30s未收到heartbeat的datanode,namenode会将之判为最低优先级的读写 

    Set the connection property Consistency to timeline in the JDBC connect string 

    -XX:+UseCMSCompactAtFullCollection 与 -XX:CMSFullGCsBeforeCompaction=1 

    -XX:CMSInitiatingOccupancyFraction=70 和-XX:+UseCMSInitiatingOccupancyOnly 

    -XX:+CMSScavengeBeforeRemark

    core-site.xml

    <property> 

        <name>ipc.server.tcpnodelay</name>

        <value>true</value>

    </property>

    <property>

        <name>dfs.namenode.stale.datanode.interval</name>

        <value>true</value>

    </property>

    hdfs-site.xml

    <property> 

        <name>dfs.namenode.avoid.read.stale.datanode</name>

        <value>true</value>

    </property>

    <property> 

        <name>dfs.namenode.avoid.write.stale.datanode</name> 

        <value>true</value> 

    </property> 

    <property> 

        <name>dfs.namenode.stale.datanode.interval</name> 

        <value>60000</value> 

    </property> 

    <property>

        <name>dfs.namenode.write.stale.datanode.ratio</name>

        <value>0.3f</value>

    </property>

    <!--python -c 'import math ; print int(math.log(16) * 20)' = 60-->

    <property>

        <name>dfs.namenode.service.handler.count</name>

        <value>60</value>

    </property>

    <property>

        <name>dfs.namenode.handler.count</name>

        <value>60</value>

        <description>The number of server threads for the namenode.</description>

    </property>

    <property>

        <name>dfs.datanode.handler.count</name>

        <value>60</value>

    </property>

    <property>

        <name>dfs.datanode.max.transfer.threads</name>

        <value>409600</value>

    </property>

    <!--http://muziyuchen.com/hdfs-6/-->

    <property>

        <name>dfs.client.block.write.locateFollowingBlock.retries</name>

        <value>30</value>

    </property>

    yarn-site.xml

    <!--Yarn Agg Configuration-->

    <property>

        <name>yarn.nodemanager.log-dirs</name>

        <value>/home/disk1/yarnlogs,/home/disk2/yarnlogs,/home/disk3/yarnlogs,/home/disk4/yarnlogs,/home/disk5/yarnlogs,/home/disk6/yarnlogs,/home/disk7/yarnlogs,/home/disk8/yarnlogs</value>

    </property>

    <property>

        <name>yarn.log-aggregation-enable</name>

        <value>true</value>

    </property>

    <property>

        <name>yarn.log-aggregation.retain-seconds</name>

        <value>864000</value>

    </property>

    <property> 

        <name>yarn.log-aggregation.retain-check-interval-seconds</name>

        <value>-1</value>

    </property>

    <property>

        <name>yarn.nodemanager.log-aggregation.roll-monitoring-interval-seconds</name>

        <value>10800</value>

    </property>

    <property>

        <name>yarn.nodemanager.delete.debug-delay-sec</name>

        <value>10800</value>

    </property>

    <property>

        <name>yarn.nodemanager.log.retain-seconds</name>

        <value>10800</value>

    </property>

    <property>   

        <name>yarn.nodemanager.remote-app-log-dir</name>

        <value>/var/hadoop/yarn</value>

    </property>

    <property>   

        <name>yarn.nodemanager.remote-app-log-dir-suffix</name>

        <value>logs</value>

    </property>

    <!--Yarn Log Dirs-->

    <property>

        <name>yarn.nodemanager.disk-health-checker.min-healthy-disks</name>

        <value>0.25</value>

    </property>

    <property>   

        <name>yarn.nodemanager.disk-health-checker.max-disk-utilization-per-disk-percentage</name>

        <value>98.1</value>

    </property>

    <property>

        <name>yarn.nodemanager.disk-health-checker.min-free-space-per-disk-mb</name>

        <value>0</value>

    </property>

    <property>   

        <name>yarn.resourcemanager.fs.state-store.uri</name>

        <value>${hadoop.tmp.dir}/yarn/system/rmstore</value>

    </property>

    <property>   

        <name>yarn.resourcemanager.leveldb-state-store.path</name>

        <value>${hadoop.tmp.dir}/yarn/system/rmstore</value>

    </property>

    <property>   

        <name>yarn.nodemanager.local-dirs</name>

        <value>${hadoop.tmp.dir}/nm-local-dir</value>

    </property>

    <property>   

        <name>yarn.nodemanager.recovery.dir</name>

        <value>${hadoop.tmp.dir}/yarn-nm-recovery</value>

    </property>

    <property>   

        <name>yarn.timeline-service.leveldb-timeline-store.path</name>

        <value>${hadoop.tmp.dir}/yarn/timeline</value>

    </property>

    <property>   

        <name>yarn.timeline-service.leveldb-state-store.path</name>

        <value>${hadoop.tmp.dir}/yarn/timeline</value>

    </property>

    相关文章

      网友评论

          本文标题:Phoenix调优参数

          本文链接:https://www.haomeiwen.com/subject/mhujwhtx.html