HashMap的数据结构
image.png从上图中可以很清楚的看到,HashMap的数据结构是数组+链表+红黑树(红黑树since JDK1.8)。我们常把数组中的每一个节点称为一个桶。当向桶中添加一个键值对时,首先计算键值对中key的hash值,以此确定插入数组中的位置,但是可能存在同一hash值的元素已经被放在数组同一位置了,这种现象称为碰撞,这时按照尾插法(jdk1.7及以前为头插法)的方式添加key-value到同一hash值的元素的后面,链表就这样形成了。当链表长度超过8(TREEIFY_THRESHOLD)时,链表就转换为红黑树。
HashMap是Map接口基于哈希表的实现。这种实现提供了所有可选的Map操作,并允许key和value为null(除了HashMap是unsynchronized的和允许使用null外,HashMap和HashTable大致相同。)。此类不保证映射的顺序,特别是它不保证该顺序恒久不变。
此实现假设哈希函数在桶内适当地分布元素,为基本实现(get 和 put)提供了稳定的性能。迭代 collection 视图所需的时间与 HashMap 实例的“容量”(桶的数量)及其大小(键-值映射关系数)成比例。如果遍历操作很重要,就不要把初始化容量initial capacity设置得太高(或将加载因子load factor设置得太低),否则会严重降低遍历的效率。
HashMap有两个影响性能的重要参数:初始化容量initial capacity、加载因子load factor。容量是哈希表中桶的数量,初始容量只是哈希表在创建时的容量。加载因子是哈希表在其容量自动增加之前可以达到多满的一种尺度。initial capacityload factor就是当前允许的最大元素数目,超过initial capacityload factor之后,HashMap就会进行rehashed操作来进行扩容,扩容后的的容量为之前的两倍。
通常,默认加载因子 (0.75) 在时间和空间成本上寻求一种折衷。加载因子过高虽然减少了空间开销,但同时也增加了查询成本(在大多数 HashMap类的操作中,包括 get 和 put 操作,都反映了这一点)。在设置初始容量时应该考虑到映射中所需的条目数及其加载因子,以便最大限度地减少rehash操作次数。如果初始容量大于最大条目数除以加载因子,则不会发生rehash 操作。
如果很多映射关系要存储在 HashMap 实例中,则相对于按需执行自动的 rehash 操作以增大表的容量来说,使用足够大的初始容量创建它将使得映射关系能更有效地存储。
注意,此实现不是同步的。如果多个线程同时访问一个哈希映射,而其中至少一个线程从结构上修改了该映射,则它必须保持外部同步。(结构上的修改是指添加或删除一个或多个映射关系的任何操作;仅改变与实例已经包含的键关联的值不是结构上的修改。)这一般通过对自然封装该映射的对象进行同步操作来完成。如果不存在这样的对象,则应该使用 Collections.synchronizedMap 方法来“包装”该映射。最好在创建时完成这一操作,以防止对映射进行意外的非同步访问,如下所示:
Map m = Collections.synchronizedMap(new HashMap(…));
由所有此类的“collection 视图方法”所返回的迭代器都是fail-fast 的:在迭代器创建之后,如果从结构上对映射进行修改,除非通过迭代器本身的remove方法,其他任何时间任何方式的修改,迭代器都将抛出 ConcurrentModificationException。因此,面对并发的修改,迭代器很快就会完全失败,而不冒在将来不确定的时间发生任意不确定行为的风险。
注意,迭代器的快速失败行为不能得到保证,一般来说,存在非同步的并发修改时,不可能作出任何坚决的保证。快速失败迭代器尽最大努力抛出 ConcurrentModificationException。因此,编写依赖于此异常的程序的做法是错误的,正确做法是:迭代器的快速失败行为应该仅用于检测bug。
此类是 Java Collections Framework 的成员。
静态全局变量
/**
* 默认初始化容量,值为16
* 必须是2的n次幂.
*/
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
/**
* 最大容量, 容量不能超出这个值。如果一个更大的初始化容量在构造函数中被指定,将被MAXIMUM_CAPACITY替换.
* 必须是2的倍数。最大容量为1<<30,即2的30次方。
*/
static final int MAXIMUM_CAPACITY = 1 << 30;
/**
* 默认的加载因子。
*/
static final float DEFAULT_LOAD_FACTOR = 0.75f;
/**
* 将链表转化为红黑树的临界值。
* 当添加一个元素被添加到有至少TREEIFY_THRESHOLD个节点的桶中,桶中链表将被转化为树形结构。
* 临界值最小为8
*/
static final int TREEIFY_THRESHOLD = 8;
/**
* 恢复成链式结构的桶大小临界值
* 小于TREEIFY_THRESHOLD,临界值最大为6
*/
static final int UNTREEIFY_THRESHOLD = 6;
/**
* 桶可能被转化为树形结构的最小容量。当哈希表的大小超过这个阈值,才会把链式结构转化成树型结构,否则仅采取扩容来尝试减少冲突。
* 应该至少4*TREEIFY_THRESHOLD来避免扩容和树形结构化之间的冲突。
*/
static final int MIN_TREEIFY_CAPACITY = 64;
Node内部类
static class Node<K,V> implements Map.Entry<K,V> {
final int hash;
final K key;
V value;
Node<K,V> next;
}
TreeNode内部类
// 位于HashMap中
static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {
TreeNode<K,V> parent; // red-black tree links
TreeNode<K,V> left;
TreeNode<K,V> right;
TreeNode<K,V> prev; // needed to unlink next upon deletion
boolean red;
}
// 位于LinkedHashMap中,典型的双向链表节点
static class Entry<K,V> extends HashMap.Node<K,V> {
Entry<K,V> before, after;
Entry(int hash, K key, V value, Node<K,V> next) {
super(hash, key, value, next);
}
}
HashMap(int initialCapacity)构造方法
public HashMap(int initialCapacity, float loadFactor) {
// 检查传入的初始容量是否合法
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal initial capacity: " +
initialCapacity);
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
// 检查装载因子是否合法
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal load factor: " +
loadFactor);
this.loadFactor = loadFactor;
// 计算扩容门槛
this.threshold = tableSizeFor(initialCapacity);
}
static final int tableSizeFor(int cap) {
// 扩容门槛为传入的初始容量往上取最近的2的n次方
int n = cap - 1;
n |= n >>> 1;
n |= n >>> 2;
n |= n >>> 4;
n |= n >>> 8;
n |= n >>> 16;
return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}
put(K key, V value)方法
public V put(K key, V value) {
// 调用hash(key)计算出key的hash值
return putVal(hash(key), key, value, false, true);
}
static final int hash(Object key) {
int h;
// 如果key为null,则hash值为0,否则调用key的hashCode()方法
// 并让高16位与整个hash异或,这样做是为了使计算出的hash更分散
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K, V>[] tab;
Node<K, V> p;
int n, i;
// 如果桶的数量为0,则初始化
if ((tab = table) == null || (n = tab.length) == 0)
// 调用resize()初始化
n = (tab = resize()).length;
// (n - 1) & hash 计算元素在哪个桶中
// 如果这个桶中还没有元素,则把这个元素放在桶中的第一个位置
if ((p = tab[i = (n - 1) & hash]) == null)
// 新建一个节点放在桶中
tab[i] = newNode(hash, key, value, null);
else {
// 如果桶中已经有元素存在了
Node<K, V> e;
K k;
// 如果桶中第一个元素的key与待插入元素的key相同,保存到e中用于后续修改value值
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
else if (p instanceof TreeNode)
// 如果第一个元素是树节点,则调用树节点的putTreeVal插入元素
e = ((TreeNode<K, V>) p).putTreeVal(this, tab, hash, key, value);
else {
// 遍历这个桶对应的链表,binCount用于存储链表中元素的个数
for (int binCount = 0; ; ++binCount) {
// 如果链表遍历完了都没有找到相同key的元素,说明该key对应的元素不存在,则在链表最后插入一个新节点
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
// 如果插入新节点后链表长度大于8,则判断是否需要树化,因为第一个元素没有加到binCount中,所以这里-1
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
// 如果待插入的key在链表中找到了,则退出循环
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
// 如果找到了对应key的元素
if (e != null) { // existing mapping for key
// 记录下旧值
V oldValue = e.value;
// 判断是否需要替换旧值
if (!onlyIfAbsent || oldValue == null)
// 替换旧值为新值
e.value = value;
// 在节点被访问后做点什么事,在LinkedHashMap中用到
afterNodeAccess(e);
// 返回旧值
return oldValue;
}
}
// 到这里了说明没有找到元素
// 修改次数加1
++modCount;
// 元素数量加1,判断是否需要扩容
if (++size > threshold)
// 扩容
resize();
// 在节点插入后做点什么事,在LinkedHashMap中用到
afterNodeInsertion(evict);
// 没找到元素返回null
return null;
}
(1)计算key的hash值;
(2)如果桶(数组)数量为0,则初始化桶;
(3)如果key所在的桶没有元素,则直接插入;
(4)如果key所在的桶中的第一个元素的key与待插入的key相同,说明找到了元素,转后续流程(9)处理;
(5)如果第一个元素是树节点,则调用树节点的putTreeVal()寻找元素或插入树节点;
(6)如果不是以上三种情况,则遍历桶对应的链表查找key是否存在于链表中;
(7)如果找到了对应key的元素,则转后续流程(9)处理;
(8)如果没找到对应key的元素,则在链表最后插入一个新节点并判断是否需要树化;
(9)如果找到了对应key的元素,则判断是否需要替换旧值,并直接返回旧值;
(10)如果插入了元素,则数量加1并判断是否需要扩容;
resize()方法
final Node<K, V>[] resize() {
// 旧数组
Node<K, V>[] oldTab = table;
// 旧容量
int oldCap = (oldTab == null) ? 0 : oldTab.length;
// 旧扩容门槛
int oldThr = threshold;
int newCap, newThr = 0;
if (oldCap > 0) {
if (oldCap >= MAXIMUM_CAPACITY) {
// 如果旧容量达到了最大容量,则不再进行扩容
threshold = Integer.MAX_VALUE;
return oldTab;
} else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
// 如果旧容量的两倍小于最大容量并且旧容量大于默认初始容量(16),则容量扩大为两部,扩容门槛也扩大为两倍
newThr = oldThr << 1; // double threshold
} else if (oldThr > 0) // initial capacity was placed in threshold
// 使用非默认构造方法创建的map,第一次插入元素会走到这里
// 如果旧容量为0且旧扩容门槛大于0,则把新容量赋值为旧门槛
newCap = oldThr;
else { // zero initial threshold signifies using defaults
// 调用默认构造方法创建的map,第一次插入元素会走到这里
// 如果旧容量旧扩容门槛都是0,说明还未初始化过,则初始化容量为默认容量,扩容门槛为默认容量*默认装载因子
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int) (DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
if (newThr == 0) {
// 如果新扩容门槛为0,则计算为容量*装载因子,但不能超过最大容量
float ft = (float) newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float) MAXIMUM_CAPACITY ?
(int) ft : Integer.MAX_VALUE);
}
// 赋值扩容门槛为新门槛
threshold = newThr;
// 新建一个新容量的数组
@SuppressWarnings({"rawtypes", "unchecked"})
Node<K, V>[] newTab = (Node<K, V>[]) new Node[newCap];
// 把桶赋值为新数组
table = newTab;
// 如果旧数组不为空,则搬移元素
if (oldTab != null) {
// 遍历旧数组
for (int j = 0; j < oldCap; ++j) {
Node<K, V> e;
// 如果桶中第一个元素不为空,赋值给e
if ((e = oldTab[j]) != null) {
// 清空旧桶,便于GC回收
oldTab[j] = null;
// 如果这个桶中只有一个元素,则计算它在新桶中的位置并把它搬移到新桶中
// 因为每次都扩容两倍,所以这里的第一个元素搬移到新桶的时候新桶肯定还没有元素
if (e.next == null)
newTab[e.hash & (newCap - 1)] = e;
else if (e instanceof TreeNode)
// 如果第一个元素是树节点,则把这颗树打散成两颗树插入到新桶中去
((TreeNode<K, V>) e).split(this, newTab, j, oldCap);
else { // preserve order
// 如果这个链表不止一个元素且不是一颗树
// 则分化成两个链表插入到新的桶中去
// 比如,假如原来容量为4,3、7、11、15这四个元素都在三号桶中
// 现在扩容到8,则3和11还是在三号桶,7和15要搬移到七号桶中去
// 也就是分化成了两个链表
Node<K, V> loHead = null, loTail = null;
Node<K, V> hiHead = null, hiTail = null;
Node<K, V> next;
do {
next = e.next;
// (e.hash & oldCap) == 0的元素放在低位链表中
// 比如,3 & 4 == 0
// 注意:不是(e.hash & (oldCap-1));而是(e.hash & oldCap)
// (e.hash & oldCap) 得到的是 元素的在数组中的位置是否需要移动,示例如下
// 示例1:
// e.hash=10 0000 1010
// oldCap=16 0001 0000
// & =0 0000 0000 比较高位的第一位 0
//结论:元素位置在扩容后数组中的位置没有发生改变
// 示例2:
// e.hash=17 0001 0001
// oldCap=16 0001 0000
// & =1 0001 0000 比较高位的第一位 1
//结论:元素位置在扩容后数组中的位置发生了改变,新的下标位置是原下标位置+原数组长度
// (e.hash & (oldCap-1)) 得到的是下标位置,示例如下
// e.hash=10 0000 1010
// oldCap-1=15 0000 1111
// & =10 0000 1010
// e.hash=17 0001 0001
// oldCap-1=15 0000 1111
// & =1 0000 0001
//新下标位置
// e.hash=17 0001 0001
// newCap-1=31 0001 1111 newCap=32
// & =17 0001 0001 1+oldCap = 1+16
//元素在重新计算hash之后,因为n变为2倍,那么n-1的mask范围在高位多1bit(红色),因此新的index就会发生这样的变化:
// 0000 0001->0001 0001
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
} else {
// (e.hash & oldCap) != 0的元素放在高位链表中
// 比如,7 & 4 != 0
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
// 遍历完成分化成两个链表了
// 低位链表在新桶中的位置与旧桶一样(即3和11还在三号桶中)
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
// 高位链表在新桶中的位置正好是原来的位置加上旧容量(即7和15搬移到七号桶了)
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}
(1)如果使用是默认构造方法,则第一次插入元素时初始化为默认值,容量为16,扩容门槛为12;
(2)如果使用的是非默认构造方法,则第一次插入元素时初始化容量等于扩容门槛,扩容门槛在构造方法里等于传入容量向上最近的2的n次方;
(3)如果旧容量大于0,则新容量等于旧容量的2倍,但不超过最大容量2的30次方,新扩容门槛为旧扩容门槛的2倍;
(4)创建一个新容量的桶;
(5)搬移元素,原链表分化成两个链表,低位链表存储在原来桶的位置,高位链表搬移到原来桶的位置加旧容量的位置;
TreeNode.putTreeVal(…)方法
final TreeNode<K, V> putTreeVal(HashMap<K, V> map, Node<K, V>[] tab,
int h, K k, V v) {
Class<?> kc = null;
// 标记是否找到这个key的节点
boolean searched = false;
// 找到树的根节点
TreeNode<K, V> root = (parent != null) ? root() : this;
// 从树的根节点开始遍历
for (TreeNode<K, V> p = root; ; ) {
// dir=direction,标记是在左边还是右边
// ph=p.hash,当前节点的hash值
int dir, ph;
// pk=p.key,当前节点的key值
K pk;
if ((ph = p.hash) > h) {
// 当前hash比目标hash大,说明在左边
dir = -1;
}
else if (ph < h)
// 当前hash比目标hash小,说明在右边
dir = 1;
else if ((pk = p.key) == k || (k != null && k.equals(pk)))
// 两者hash相同且key相等,说明找到了节点,直接返回该节点
// 回到putVal()中判断是否需要修改其value值
return p;
else if ((kc == null &&
// 如果k是Comparable的子类则返回其真实的类,否则返回null
(kc = comparableClassFor(k)) == null) ||
// 如果k和pk不是同样的类型则返回0,否则返回两者比较的结果
(dir = compareComparables(kc, k, pk)) == 0) {
// 这个条件表示两者hash相同但是其中一个不是Comparable类型或者两者类型不同
// 比如key是Object类型,这时可以传String也可以传Integer,两者hash值可能相同
// 在红黑树中把同样hash值的元素存储在同一颗子树,这里相当于找到了这颗子树的顶点
// 从这个顶点分别遍历其左右子树去寻找有没有跟待插入的key相同的元素
if (!searched) {
TreeNode<K, V> q, ch;
searched = true;
// 遍历左右子树找到了直接返回
if (((ch = p.left) != null &&
(q = ch.find(h, k, kc)) != null) ||
((ch = p.right) != null &&
(q = ch.find(h, k, kc)) != null))
return q;
}
// 如果两者类型相同,再根据它们的内存地址计算hash值进行比较
dir = tieBreakOrder(k, pk);
}
TreeNode<K, V> xp = p;
if ((p = (dir <= 0) ? p.left : p.right) == null) {
// 如果最后确实没找到对应key的元素,则新建一个节点
Node<K, V> xpn = xp.next;
TreeNode<K, V> x = map.newTreeNode(h, k, v, xpn);
if (dir <= 0)
xp.left = x;
else
xp.right = x;
xp.next = x;
x.parent = x.prev = xp;
if (xpn != null)
((TreeNode<K, V>) xpn).prev = x;
// 插入树节点后平衡
// 把root节点移动到链表的第一个节点
moveRootToFront(tab, balanceInsertion(root, x));
return null;
}
}
}
(1)寻找根节点;
(2)从根节点开始查找;
(3)比较hash值及key值,如果都相同,直接返回,在putVal()方法中决定是否要替换value值;
(4)根据hash值及key值确定在树的左子树还是右子树查找,找到了直接返回;
(5)如果最后没有找到则在树的相应位置插入元素,并做平衡;
treeifyBin()方法
final void treeifyBin(Node<K, V>[] tab, int hash) {
int n, index;
Node<K, V> e;
if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
// 如果桶数量小于64,直接扩容而不用树化
// 因为扩容之后,链表会分化成两个链表,达到减少元素的作用
// 当然也不一定,比如容量为4,里面存的全是除以4余数等于3的元素
// 这样即使扩容也无法减少链表的长度
resize();
else if ((e = tab[index = (n - 1) & hash]) != null) {
TreeNode<K, V> hd = null, tl = null;
// 把所有节点换成树节点
do {
TreeNode<K, V> p = replacementTreeNode(e, null);
if (tl == null)
hd = p;
else {
p.prev = tl;
tl.next = p;
}
tl = p;
} while ((e = e.next) != null);
// 如果进入过上面的循环,则从头节点开始树化
if ((tab[index] = hd) != null)
hd.treeify(tab);
}
}
TreeNode.treeify()方法
final void treeify(Node<K, V>[] tab) {
TreeNode<K, V> root = null;
for (TreeNode<K, V> x = this, next; x != null; x = next) {
next = (TreeNode<K, V>) x.next;
x.left = x.right = null;
// 第一个元素作为根节点且为黑节点,其它元素依次插入到树中再做平衡
if (root == null) {
x.parent = null;
x.red = false;
root = x;
} else {
K k = x.key;
int h = x.hash;
Class<?> kc = null;
// 从根节点查找元素插入的位置
for (TreeNode<K, V> p = root; ; ) {
int dir, ph;
K pk = p.key;
if ((ph = p.hash) > h)
dir = -1;
else if (ph < h)
dir = 1;
else if ((kc == null &&
(kc = comparableClassFor(k)) == null) ||
(dir = compareComparables(kc, k, pk)) == 0)
dir = tieBreakOrder(k, pk);
// 如果最后没找到元素,则插入
TreeNode<K, V> xp = p;
if ((p = (dir <= 0) ? p.left : p.right) == null) {
x.parent = xp;
if (dir <= 0)
xp.left = x;
else
xp.right = x;
// 插入后平衡,默认插入的是红节点,在balanceInsertion()方法里
root = balanceInsertion(root, x);
break;
}
}
}
}
// 把根节点移动到链表的头节点,因为经过平衡之后原来的第一个元素不一定是根节点了
moveRootToFront(tab, root);
}
(1)从链表的第一个元素开始遍历;
(2)将第一个元素作为根节点;
(3)其它元素依次插入到红黑树中,再做平衡;
(4)将根节点移到链表第一元素的位置(因为平衡的时候根节点会改变);
get(Object key)方法
public V get(Object key) {
Node<K, V> e;
return (e = getNode(hash(key), key)) == null ? null : e.value;
}
final Node<K, V> getNode(int hash, Object key) {
Node<K, V>[] tab;
Node<K, V> first, e;
int n;
K k;
// 如果桶的数量大于0并且待查找的key所在的桶的第一个元素不为空
if ((tab = table) != null && (n = tab.length) > 0 &&
(first = tab[(n - 1) & hash]) != null) {
// 检查第一个元素是不是要查的元素,如果是直接返回
if (first.hash == hash && // always check first node
((k = first.key) == key || (key != null && key.equals(k))))
return first;
if ((e = first.next) != null) {
// 如果第一个元素是树节点,则按树的方式查找
if (first instanceof TreeNode)
return ((TreeNode<K, V>) first).getTreeNode(hash, key);
// 否则就遍历整个链表查找该元素
do {
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
} while ((e = e.next) != null);
}
}
return null;
}
(1)计算key的hash值;
(2)找到key所在的桶及其第一个元素;
(3)如果第一个元素的key等于待查找的key,直接返回;
(4)如果第一个元素是树节点就按树的方式来查找,否则按链表方式查找;
TreeNode.getTreeNode(int h, Object k)方法
final TreeNode<K, V> getTreeNode(int h, Object k) {
// 从树的根节点开始查找
return ((parent != null) ? root() : this).find(h, k, null);
}
final TreeNode<K, V> find(int h, Object k, Class<?> kc) {
TreeNode<K, V> p = this;
do {
int ph, dir;
K pk;
TreeNode<K, V> pl = p.left, pr = p.right, q;
if ((ph = p.hash) > h)
// 左子树
p = pl;
else if (ph < h)
// 右子树
p = pr;
else if ((pk = p.key) == k || (k != null && k.equals(pk)))
// 找到了直接返回
return p;
else if (pl == null)
// hash相同但key不同,左子树为空查右子树
p = pr;
else if (pr == null)
// 右子树为空查左子树
p = pl;
else if ((kc != null ||
(kc = comparableClassFor(k)) != null) &&
(dir = compareComparables(kc, k, pk)) != 0)
// 通过compare方法比较key值的大小决定使用左子树还是右子树
p = (dir < 0) ? pl : pr;
else if ((q = pr.find(h, k, kc)) != null)
// 如果以上条件都不通过,则尝试在右子树查找
return q;
else
// 都没找到就在左子树查找
p = pl;
} while (p != null);
return null;
}
经典二叉查找树的查找过程,先根据hash值比较,再根据key值比较决定是查左子树还是右子树。
remove(Object key)方法
public V remove(Object key) {
Node<K, V> e;
return (e = removeNode(hash(key), key, null, false, true)) == null ?
null : e.value;
}
final Node<K, V> removeNode(int hash, Object key, Object value,
boolean matchValue, boolean movable) {
Node<K, V>[] tab;
Node<K, V> p;
int n, index;
// 如果桶的数量大于0且待删除的元素所在的桶的第一个元素不为空
if ((tab = table) != null && (n = tab.length) > 0 &&
(p = tab[index = (n - 1) & hash]) != null) {
Node<K, V> node = null, e;
K k;
V v;
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
// 如果第一个元素正好就是要找的元素,赋值给node变量后续删除使用
node = p;
else if ((e = p.next) != null) {
if (p instanceof TreeNode)
// 如果第一个元素是树节点,则以树的方式查找节点
node = ((TreeNode<K, V>) p).getTreeNode(hash, key);
else {
// 否则遍历整个链表查找元素
do {
if (e.hash == hash &&
((k = e.key) == key ||
(key != null && key.equals(k)))) {
node = e;
break;
}
p = e;
} while ((e = e.next) != null);
}
}
// 如果找到了元素,则看参数是否需要匹配value值,如果不需要匹配直接删除,如果需要匹配则看value值是否与传入的value相等
if (node != null && (!matchValue || (v = node.value) == value ||
(value != null && value.equals(v)))) {
if (node instanceof TreeNode)
// 如果是树节点,调用树的删除方法(以node调用的,是删除自己)
((TreeNode<K, V>) node).removeTreeNode(this, tab, movable);
else if (node == p)
// 如果待删除的元素是第一个元素,则把第二个元素移到第一的位置
tab[index] = node.next;
else
// 否则删除node节点
p.next = node.next;
++modCount;
--size;
// 删除节点后置处理
afterNodeRemoval(node);
return node;
}
}
return null;
}
(1)先查找元素所在的节点;
(2)如果找到的节点是树节点,则按树的移除节点处理;
(3)如果找到的节点是桶中的第一个节点,则把第二个节点移到第一的位置;
(4)否则按链表删除节点处理;
(5)修改size,调用移除节点后置处理等;
TreeNode.removeTreeNode(…)方法
final void removeTreeNode(HashMap<K, V> map, Node<K, V>[] tab,
boolean movable) {
int n;
// 如果桶的数量为0直接返回
if (tab == null || (n = tab.length) == 0)
return;
// 节点在桶中的索引
int index = (n - 1) & hash;
// 第一个节点,根节点,根左子节点
TreeNode<K, V> first = (TreeNode<K, V>) tab[index], root = first, rl;
// 后继节点,前置节点
TreeNode<K, V> succ = (TreeNode<K, V>) next, pred = prev;
if (pred == null)
// 如果前置节点为空,说明当前节点是根节点,则把后继节点赋值到第一个节点的位置,相当于删除了当前节点
tab[index] = first = succ;
else
// 否则把前置节点的下个节点设置为当前节点的后继节点,相当于删除了当前节点
pred.next = succ;
// 如果后继节点不为空,则让后继节点的前置节点指向当前节点的前置节点,相当于删除了当前节点
if (succ != null)
succ.prev = pred;
// 如果第一个节点为空,说明没有后继节点了,直接返回
if (first == null)
return;
// 如果根节点的父节点不为空,则重新查找父节点
if (root.parent != null)
root = root.root();
// 如果根节点为空,则需要反树化(将树转化为链表)
// 如果需要移动节点且树的高度比较小,则需要反树化
if (root == null
|| (movable
&& (root.right == null
|| (rl = root.left) == null
|| rl.left == null))) {
tab[index] = first.untreeify(map); // too small
return;
}
// 分割线,以上都是删除链表中的节点,下面才是直接删除红黑树的节点(因为TreeNode本身即是链表节点又是树节点)
// 删除红黑树节点的大致过程是寻找右子树中最小的节点放到删除节点的位置,然后做平衡,此处不过多注释
TreeNode<K, V> p = this, pl = left, pr = right, replacement;
if (pl != null && pr != null) {
TreeNode<K, V> s = pr, sl;
while ((sl = s.left) != null) // find successor
s = sl;
boolean c = s.red;
s.red = p.red;
p.red = c; // swap colors
TreeNode<K, V> sr = s.right;
TreeNode<K, V> pp = p.parent;
if (s == pr) { // p was s's direct parent
p.parent = s;
s.right = p;
} else {
TreeNode<K, V> sp = s.parent;
if ((p.parent = sp) != null) {
if (s == sp.left)
sp.left = p;
else
sp.right = p;
}
if ((s.right = pr) != null)
pr.parent = s;
}
p.left = null;
if ((p.right = sr) != null)
sr.parent = p;
if ((s.left = pl) != null)
pl.parent = s;
if ((s.parent = pp) == null)
root = s;
else if (p == pp.left)
pp.left = s;
else
pp.right = s;
if (sr != null)
replacement = sr;
else
replacement = p;
} else if (pl != null)
replacement = pl;
else if (pr != null)
replacement = pr;
else
replacement = p;
if (replacement != p) {
TreeNode<K, V> pp = replacement.parent = p.parent;
if (pp == null)
root = replacement;
else if (p == pp.left)
pp.left = replacement;
else
pp.right = replacement;
p.left = p.right = p.parent = null;
}
TreeNode<K, V> r = p.red ? root : balanceDeletion(root, replacement);
if (replacement == p) { // detach
TreeNode<K, V> pp = p.parent;
p.parent = null;
if (pp != null) {
if (p == pp.left)
pp.left = null;
else if (p == pp.right)
pp.right = null;
}
}
if (movable)
moveRootToFront(tab, r);
}
(1)TreeNode本身既是链表节点也是红黑树节点;
(2)先删除链表节点;
(3)再删除红黑树节点并做平衡;
总结
(1)HashMap是一种散列表,采用(数组 + 链表 + 红黑树)的存储结构;
(2)HashMap的默认初始容量为16(1<<4),默认装载因子为0.75f,容量总是2的n次方;
(3)HashMap扩容时每次容量变为原来的两倍;
(4)当桶的数量小于64时不会进行树化,只会扩容;
(5)当桶的数量大于64且单个桶中元素的数量大于8时,进行树化;
(6)当单个桶中元素数量小于6时,进行反树化;
(7)HashMap是非线程安全的容器;
(8)HashMap查找添加元素的时间复杂度都为O(1);
网友评论