欢迎关注天善智能,我们是专注于商业智能BI,人工智能AI,大数据分析与挖掘领域的垂直社区,学习,问答、求职一站式搞定!
对商业智能BI、大数据分析挖掘、机器学习,python,R等数据领域感兴趣的同学加微信:tstoutiao,并注明消息来源,邀请你进入数据爱好者交流群,数据爱好者们都在这儿。
作者:李誉辉
四川大学在读研究生
往期连载:
9Guides图例与增加坐标轴
图例函数:
*
guide_colorbar()/guide_colourbar()用于连续变量的图例
*
guide_legend()用于离散变量的图例,也可以用于连续变量
*
guides() 将_colorbar和_legend嵌套进去,方便映射,如guides(fill = guide_colorbar()) 可以在scale_xxx()标度中指定guide类型,guide = “colorbar”或guide = “legend”
常用公共参数:
(点击放大)
9.1guide_colorbar
**_colorbar()参数: **
(点击放大)
library(ggplot2)
library(reshape2)
df <- melt(outer(1:4, 1:4), varnames = c("X1", "X2"))
p1 <- ggplot(df, aes(X1, X2)) + geom_tile(aes(fill = value))
p2 <- p1 + geom_point(aes(size = value))
p1 + scale_fill_continuous(guide = "colorbar") # 默认形式
p1 + guides(fill = guide_colorbar()) # 具体映射
p1 + scale_fill_distiller(palette = "YlGn", direction = 1) +
guides(fill = guide_colorbar(title = "值", nbin = 100, # 指定图例名称,水平放置,增加分箱数为100
barwidth = 0.5, barheight = 10,# 指定图例箱体尺寸,宽为0.5mm,高为10mm
ticks.colour = "red", # 更改刻度线颜色
frame.colour = "blue",frame.linewidth = 0.5, # 增加箱体边框
draw.ulim = TRUE, draw.llim = TRUE # 显示最大,最小刻度线
))
p2 + scale_fill_continuous(guide = "colorbar") + scale_size(guide = "legend") # 在标度中控制图例
p2 + guides(fill = "colorbar", size = "legend") # 与上面结果一样
p2 + scale_fill_continuous(guide = guide_colorbar(direction = "horizontal")) +
scale_size(guide = guide_legend(direction = "vertical")) # 更改图例方向
9.2guide_legend
**_legend()参数:**
(点击放大)
library(ggplot2)
library(reshape2)
df <- melt(outer(1:4, 1:4), varnames = c("X1", "X2"))
p1 <- ggplot(df, aes(X1, X2)) + geom_tile(aes(fill = value))
p2 <- p1 + geom_point(aes(size = value))
p1 + scale_fill_continuous(guide = guide_legend()) # 连续标度中设置离散图例
p1 + scale_fill_distiller(type = "qual", palette = "Set3") +
guides(fill = guide_legend(title = "左", title.position = "left", # 指定图例名称为"左", 位置为箱体的左边
key.width = 5, key.height = 10, nrow = 2, ncol = 2, byrow = TRUE # 修改箱体尺寸,并矩形排列,按行排
))
p1 + guides(fill = guide_legend(
title.theme = element_text(size = 15, face = "italic", colour = "red", angle = 0)) # 在图例中修改图例主题,一般在主题函数内修改
)
p1 + scale_fill_continuous(breaks = c(5, 10, 15),
labels = paste("long", c(5, 10, 15)),
guide = guide_legend(
direction = "horizontal", # 水平排列箱体
title.position = "top", # 图例标题置于顶部
label.position = "bottom", # 图例刻度标签置于底部
label.hjust = 0.5, # 刻度标签水平位置偏移
label.vjust = 1, # 刻度标签垂直位置偏移
label.theme = element_text(angle = 90) # 图例主题中修改刻度标签角度
)
)
9.3guides多个图例
guides多个图例:
guides()内部嵌套guide_legend()和guide_colorbar(),添加一个映射参数,如:
guides(
colour = guide_colourbar(order = 1),
shape = guide_legend(order = 2),
size = guide_legend(order = 3)
)
library(ggplot2)
dat <- data.frame(x = 1:5, y = 1:5, p = 1:5, q = factor(1:5), r = factor(1:5))
p <- ggplot(dat, aes(x, y, colour = p, size = q, shape = r)) + geom_point()
p
p + guides(colour = guide_colorbar(), size = guide_legend(), shape = guide_legend()) # 默认按参数顺序排列多个图例
p + scale_colour_continuous(guide = "colorbar") +
scale_size_discrete(guide = "legend") +
scale_shape(guide = "legend") +
guides(colour = "none") # 删除一个图例
# 设定多个图例
ggplot(mpg, aes(displ, cty)) +
geom_point(aes(size = hwy, colour = cyl, shape = drv)) +
guides(
colour = guide_colourbar(order = 1), # order指定图例排列顺序
shape = guide_legend(order = 2),
size = guide_legend(order = 3)
)
9.4多图例合并
library(ggplot2)
# 图例合并: 多个不同标度图例合并:
# 当图例类型一致,图例标题一致时,会自动合并图例
dat <- data.frame(x = 1:5, y = 1:5, p = 1:5, q = factor(1:5), r = factor(1:5))
p <- ggplot(dat, aes(x, y, colour = p, size = q, shape = r)) + geom_point()
p + guides(colour = guide_legend("这是图例标题"), size = guide_legend("这是图例标题"),
shape = guide_legend("这是图例标题")) + theme(legend.position = "bottom") # 主题函数中调节图例位置
## 多种几何对象图例合并:
## 若都是同一个变量映射的,且标度类型一致,标度标题相同,标度values等长,给标度新增labels参数,labels相同,则会自动合并图例
state1 <- c(rep(c(rep("N", 7), rep("Y", 7)), 2))
year <- rep(c(2003:2009), 4)
group1 <- c(rep("C", 14), rep("E", 14))
group2 <- paste(state1, group1, sep = "")
beta <- c(0.16, 0.15, 0.08, 0.08, 0.18, 0.48, 0.14, 0.19, 0, 0, 0.04, 0.08,
0.27, 0.03, 0.11, 0.12, 0.09, 0.09, 0.1, 0.19, 0.16, 0, 0.11, 0.07, 0.08,
0.09, 0.19, 0.1)
lcl <- c(0.13, 0.12, 0.05, 0.05, 0.12, 0.35, 0.06, 0.13, 0, 0, 0.01, 0.04, 0.2,
0, 0.09, 0.09, 0.06, 0.06, 0.07, 0.15, 0.11, 0, 0.07, 0.03, 0.05, 0.06,
0.15, 0.06)
ucl <- c(0.2, 0.2, 0.13, 0.14, 0.27, 0.61, 0.28, 0.27, 0, 1, 0.16, 0.16, 0.36,
0.82, 0.14, 0.15, 0.13, 0.13, 0.15, 0.23, 0.21, 0, 0.15, 0.14, 0.12, 0.12,
0.23, 0.16)
data <- data.frame(state1, year, group1, group2, beta, lcl, ucl)
ggplot(data = data, aes(x = year, y = beta, colour = group2, shape = group2)) +
geom_point(size = 4) + geom_errorbar(aes(ymin = lcl, ymax = ucl), colour = "black",
width = 0.5) + scale_colour_manual(name = "Treatment & State", labels = c("Control, Non-F",
"Control, Flwr", "Exclosure, Non-F", "Exclosure, Flwr"), values = c("blue",
"red", "blue", "red")) + scale_shape_manual(name = "Treatment & State",
labels = c("Control, Non-F", "Control, Flwr", "Exclosure, Non-F", "Exclosure, Flwr"),
values = c(19, 19, 17, 17))
### 映射变量相同,在标度labs函数中设置相同的标度名称
ggplot(iris) + aes(x = Sepal.Length, y = Sepal.Width, color = Species, linetype = Species,
shape = Species) + geom_line() + geom_point() + labs(color = "Guide name",
linetype = "Guide name", shape = "Guide name")
### 下一个例子
x <- seq(0, 10, by = 0.2)
y1 <- sin(x)
y2 <- cos(x)
y3 <- cos(x + pi/4)
y4 <- sin(x + pi/4)
df1 <- data.frame(x, y = y1, Type = as.factor("sin"), Method = as.factor("method1"))
df2 <- data.frame(x, y = y2, Type = as.factor("cos"), Method = as.factor("method1"))
df3 <- data.frame(x, y = y3, Type = as.factor("cos"), Method = as.factor("method2"))
df4 <- data.frame(x, y = y4, Type = as.factor("sin"), Method = as.factor("method2"))
df.merged <- rbind(df1, df2, df3, df4)
y5 <- sin(x - pi/4)
df5 <- data.frame(x, y = y5, Type = as.factor("sin"), Method = as.factor("method3"))
df.merged <- rbind(df1, df2, df3, df4, df5)
df.merged$int <- paste(df.merged$Type, df.merged$Method, sep = ".") # 给数据源新增一列变量
ggplot(df.merged, aes(x, y, colour = int, linetype = int, shape = int)) + geom_line() +
geom_point() + scale_colour_discrete("") + scale_linetype_manual("", values = c(1,
2, 1, 2, 3)) + scale_shape_manual("", values = c(17, 17, 16, 16, 15))
9.5新增坐标轴
所有的新增坐标轴都是基于现有坐标轴变换而来的
*
sec_axis(trans = NULL, name = waiver(), breaks = waiver(), labels = waiver())
* dup_axis(trans = ~., name = derive(), breaks = derive(), labels = derive())
* derive()
参数解释:
* trans 表示指定变换公式
* name 表示指定新增坐标轴的名称
* breaks 表示指定新增坐标轴刻度点位置
* labels 表示指定新增坐标轴刻度标签 * derive 表示继承现有坐标轴,基本上就是复制,没有变换关系,如果有变换关系,还是用
sec_axis()吧
library(ggplot2)
p <- ggplot(mtcars, aes(cyl, mpg)) + geom_point()
p + scale_y_continuous(sec.axis = sec_axis(~. + 10)) # 在标度函数中新增第2个y轴,变换关系为:原y轴 + 10
p + scale_y_continuous("英里/每加仑", sec.axis = sec_axis(~. + 10, name = "公里/L")) # 新增y轴,轴名称为:公里每升,原y轴为:英里/加仑
p + scale_y_continuous(sec.axis = ~.^2) # 变换关系为:平方
p + scale_y_continuous(sec.axis = ~.^2 * 3 + 4 * .) # 变换关系为:3*y^2 + 4*y
10themes主题系统
内部函数及参数非常多,跟present data没有一点关系,新手不建议学,会搅乱思路
针对新手,建议使用ggThemeAssist包进行主题设置,用鼠标而不是代码,更加方便,或者套用主题模板,下面会介绍
10.1主题函数分类
新手可以跳过这个小节
主题系统_文本标签:
*
element_text()
* element_rect()
* element_line()
* element_blank()清空任意主题对象,默认返回默认主题
10.2ggThemeAssist包
需要安装shiny包 安装好该包后,RStudio界面就会出现“Addins”下拉菜单
使用方法:首先运行函数要画图的ggplot2代码,以加载到内存
然后选中该画图函数,如gg, 然后点击Addins下拉菜单,
点击“ggplot Theme Assistant”,就会出现一个交互式的shiny弹窗,然后在该弹窗上用鼠标操作 在交互弹窗中处理完后,点击右上角的“Done”按钮,然后就将主题代码输出到需要的位置了 最后进行对代码进行微调,有的地方可能会少括号或引号
如图所示,真的非常简单
rm(list = ls())
gc()
library(ggplot2)
gg <- ggplot(mtcars, aes(x = hp, y = mpg, colour = as.factor(cyl))) + geom_point() +
theme_bw()
# 运行以上代码,然后选中下一行代码中的'gg'函数,
gg + theme(plot.subtitle = element_text(size = 12, face = "bold", colour = "maroon2",
hjust = 0.75), plot.caption = element_text(size = 10, face = "bold", colour = "mediumpurple1"),
axis.line = element_line(colour = "darkorchid", size = 0.3, linetype = "solid"),
axis.ticks = element_line(colour = "magenta", size = 1.5), panel.grid.major = element_line(linetype = "blank"),
panel.grid.minor = element_line(linetype = "blank"), axis.title = element_text(size = 13,
face = "bold", colour = "brown1"), axis.text = element_text(family = "serif",
size = 13, face = "bold", colour = "orangered", hjust = 1, vjust = 0.25,
angle = 20), axis.text.x = element_text(colour = "firebrick1"), plot.title = element_text(family = "serif",
size = 16, face = "bold", colour = "deeppink", hjust = 0.5), legend.text = element_text(family = "mono",
colour = "brown2"), legend.title = element_text(face = "bold", family = "mono",
colour = "darkgreen"), panel.background = element_rect(fill = "goldenrod1",
colour = "white", linetype = "solid"), plot.background = element_rect(fill = "chartreuse1",
colour = NA), legend.key = element_rect(fill = "gray17"), legend.background = element_rect(fill = "lemonchiffon"),
legend.position = "top", legend.direction = "horizontal") + labs(title = "my标题",
x = "这是x轴标题", y = "这是y轴标题", subtitle = "这是副标题", caption = "这是caption尾注") # 选中该代码,然后点击Addins下拉菜单, 在shiny弹窗中进行操作
10.3套用主题模板
主题模板包,包括ggthemes, ggtech, ggthemer, ggsci,
有很多种风格:
对于著名科技公司,如谷歌,twiter等
著名可视化软件,如D3,Tableau等, 还有著名学术期刊,如SCI,柳叶刀等
还有著名出版物,如华尔街日报等
总之,应有尽有
在套用主题模板前,先看几个主题修改函数:
*
theme()主题函数,自定义主题
*
theme_get() 获取当前默认主题的所有参数(激活主题) * theme_set(new)设置新主题(同时静默返回旧主题以便还原系统默认主题)
*
theme_update()theme()函数内部的参数会替换theme_get()内部的同名参数, theme_update()直接作用于当前主题
*
theme_replace()theme_replace()等价于theme_get() %+replace% theme(),
theme()函数内部的参数会替换theme_get()内部的同名参数,未声明的参数全部初始化为NULL。
下次使用主题时,就会更新时才调用这次更新的theme()参数
* e1% + replace% e2系统预设主题:
*
theme_grey/theme_gray
* theme_bw
* theme_linedraw
* theme_light
* theme_dark
* theme_minimal
* theme_classic
* theme_void
具体见章节:颜色及主题模板
往期精彩:
公众号后台回复关键字即可学习
回复爬虫爬虫三大案例实战
回复
Python 1小时破冰入门
回复 数据挖掘 R语言入门及数据挖掘
回复
人工智能 三个月入门人工智能
回复数据分析师 数据分析师成长之路
回复 机器学习 机器学习的商业应用
回复数据科学 数据科学实战
回复常用算法 常用数据挖掘算法
网友评论