一、主要知识点
(一)无进位退位情况
1.加法
(1)整十数相加
几个十加几个十,得几个十。
即:仅在十位上做加法
例:40+30=70
4个十加3个十,得7个十,是70
(2)两位数加整十数
- 第一步:将两位数拆分为一个整十数和一个一位数;
- 第二步:先算整十数加整十数,得数为新整十数;
-
第三步:再算新整十数加(被拆分出的)一位数,得最后的得数。
两位数加整十数
(3)整十数加两位数
同上。
(4)两位数加一位数
- 第一步:将两位数拆分为一个整十数和一个一位数;
- 第二步:先算两个一位数之和(,得数为新一位数);
- 第三步:再算(拆分出的)整十数与新一位数之和,即为得数。
(5)一位数加两位数
同上。
(6)两位数加两位数
用竖式计算。
两位数加两位数
2.减法
(1)整十数相减
几个十减去几个十,得几个十。
即:仅在十位上做减法
例:40-30=10
4个十减3个十,得1个十,是10
(2)两位数减去整十数
- 第一步:将两位数拆分为一个整十数和一个个位数;
- 第二步:先算整十数减去整十数,得数为新整十数;
-
第三步:再算新整十数加(被拆分出的)个位数,得最后的得数。
两位数减去整十数
(3)两位数减去一位数
- 第一步:将两位数拆分为一个整十数和一个个位数;
- 第二步:先算两个个位数之差(,得数为新个位数);
- 第三步:再算(拆分出的)整十数与新个位数之和,即为得数。
(4)两位数减去两位数
用竖式计算。
3.竖式计算(无进位退位)
用竖式计算时要注意:
(1)按位对齐
也就是要按位值对齐,个位对个位,十位对十位。
(2)按序计算(从右向左)
计算时要从右向左按序计算,也就是要从个位开始向左按位计算。
(3)按序写得数(从右向左)
写竖式得数时也要按序从右向左书写,即从个位开始从右向左书写。
注意:横式并存时,不要忘记要在横式上写上得数,并注意是否需要写上量词(单位)。
(二)有进位退位情况
1.进位加
(1)两位数加一位数(进位加)
- 第一步:拆分两位数为一个整十数和一个个位数;
- 第二步:先算拆分出的个位数加一位数之和;
-
第三步:再算拆分出的整十数与第二步得数之和。(按一个整十数加一个两位数的算法)
两位数加一位数(进位加)
(2)两位数加两位数(进位加)
用竖式计算。
2.退位减
(1)两位数减一位数(退位减)
- 第一步:把两位数拆分成一个整十数和一个新的两位数(20以下)
- 第二步:先算新的两位数减去一位数之差;
-
第三步:再算整十数加上第二步的得数之和,即为得数。
两位数减一位数(退位减)
(2)两位数减两位数(退位减)
用竖式计算。
3.竖式计算(进位加、退位减)
除前述竖式计算的要求,即:
个位和个位对齐,
十位和十位对齐,
从个位算起。
必须全部遵守外,还需遵守:
(1)进位加
- 个位相加满10,要向十位进1。
- 进位符(小1)要标记在最下面加数“十位”处的右下角。
- 得数个位写“满十数”的个位数。
-
“十位”上相加时,不要忘了加1。
进位加
(2)退位减
- 个位不够减,要从十位退1,在个位上加10后再减。
- 退位符(·)要标记在被减数“十位”处的头顶上。
-
十位上相减时,被减数的十位不要忘了减1。
退位减
二、易错题
- 个位加到十位上
例:
70+2=90
- 一位数加整十数时,位值错乱
例:
3+70=37
- 两位数拆分后再加减时,步骤没有全部完成
例:
35+20=5035分成30和5,先算30+20=50,遗忘了再算50+5=55这个步骤。
- 竖式计算时,位值没有对齐
例:
70-2=50
-
竖式计算时,忘记进位或退位
-
横式、竖式共存时,忘记在横式上写得数及(或)单位
三、好题推荐
-
学校要在一条大路的两边各栽25棵树,一共需要多少棵树苗?
答:25+25=50(棵)
推荐理由:
(1)“各栽、一共”,说明是等数相加;
(2)包含“进位加”知识点;
(3)包含竖式计算的知识点;
(4)包含横式书写要求的知识点。 -
( ),月季花有60朵。月季花和牡丹花一共有多少朵?
①菊花有5朵 ②月季花和牡丹花一共有80朵
③郁金香比月季花多8朵 ④牡丹花有40朵
答:④
推荐理由:
(1)补充条件题。考察对加减法的准确理解程度。
(2)解决问题题。考察对加减法的实际运用。
(3)逻辑判断题。 -
篮球、排球和足球一共有85个。其中排球和足球一共有43个,篮球和足球一共有52个。篮球有( )个,足球有( )个。
答:
已知:
篮+排+足=85
排+足=43
篮 + 足=52
得:
篮:85-43=42(个)
足:52-42=10(个)
推荐理由:
考察理解和、差的准确理解与灵活应用。
网友评论