genomicranges的学习

作者: 灵动的小猪 | 来源:发表于2018-11-05 21:37 被阅读92次

    没空改了,等有空了再来修改格式吧
    ############genomicranges的学习################

    首先使用granges来创建一个对象

    gr <- GRanges(
    seqnames = Rle(c("chr1", "chr2", "chr1", "chr3"), c(1, 3, 2, 4)),
    ranges = IRanges(101:110, end = 111:120, names = head(letters, 10)),
    strand = Rle(strand(c("-", "+", "*", "+", "-")), c(1, 2, 2, 3, 2)),
    score = 1:10,
    GC = seq(1, 0, length=10))

    gr

    查看对象中的内容

    seqnames(gr) #查看基因的名称
    ranges(gr) #查看基因的区域
    strand(gr) #查看基因位于那条链
    start(gr)
    end(gr)
    width(gr)
    names(gr)
    length(gr)

    任何文件系统中的数据分为数据和元数据

    数据是指普通文件中的实际数据,

    而元数据指用来描述一个文件的特征的系统数据,诸如访问权限、文件拥有者以及文件数据块的分布信息等等,

    而在此处元数据就是指基因的附加信息

    granges(gr) #查看基因基本信息
    as.data.frame(granges(gr))#将基因的基本信息转换为数据框

    mcols(gr) #查看基因的元信息
    as.data.frame(mcols(gr))#将基因的元数据转换为数据框

    如果要查看单独的元数据,可以使用$

    grscore grGC
    mcols(gr)score mcols(gr)GC

    切割和合并GRanges

    sp<-split(gr,rep(1:2,each=5))
    c(sp[[1]],sp[[2]])

    GRanges的亚集合

    gr[2:3]
    gr[2:3,"GC"]#后面的是GRanges的元数据列

    将某一个基因进行重复

    singles<-split(gr,names(gr))#将gr根据names来分割
    grMod<-gr[1:4]
    grMod
    grMod[2]<-singles[[1]]
    grMod

    grMod[2]<-grMod[1]

    repeat, reverse, 重复和反向

    rep(singles[[2]],times=3)
    rev(gr)

    select,截取

    head(gr,n=2)
    tail(gr,n=2)
    window(gr,start=2,end=4)
    gr[IRanges(start=c(2,7), end=c(3,9))]

    基本的一些操作

    g<-gr[1:3]
    g<-append(g,singles[[10]])
    g

    对于GRanges的方法,分为内部,外部,之间

    内部flank, resize, shift

    flank(g,10)#取得上游的10bp
    flank(g,10,start=F)#取得下游的10bp
    shift(g,5)#向上游偏移
    shift(g,-5)#向下游偏移
    resize(g,30)#调整width,只调整下游

    如果移动过有负数,可以将其变为1

    flank(g,150)
    start(g[start(g)<1])<-1

    外部reduce,gaps,range,disjoin,coverage

    reduce会对区间进行合并overlap,得到一个简化的区间

    reduce(g)
    gaps(g)
    disjoin(g)
    coverage(g)

    GRangesList的一个操作

    先不学习,以后用到了再说

    ##################GenomicRanges的小练习##########################

    读取玉米的注释文件

    library(rtracklayer)
    maize_gff<-import.gff(con = "E:\reference\Zea_mays.AGPv4.38.gff")
    head(maize_gff)

    提取出外显子区域

    maize_gff_exon<-maize_gff[maize_gff$type=="exon",]
    head(maize_gff_exon)

    添加染色体长度信息

    maize_gff_length<-maize_gff[maize_gff$type=="chromosome"]
    maize_gff_length<-sort(maize_gff_length)
    maize_gff_length
    end(maize_gff_length)
    seqlengths(maize_gff)<-end(maize_gff_length)

    library(ggbio)
    autoplot(seqinfo(maize_gff))

    看一下外显子的长度和分布

    width(maize_gff_exon)
    hist(width(maize_gff_exon))
    hist(log2(width(maize_gff_exon)))

    ################## ggbio画图 ###################
    library(ggbio)
    library(GenomicRanges)
    install.packages("stringi")

    p_ideo <- Ideogram(genome = "hg19")
    p_ideo
    p_ideo + xlim(GRanges("chr2", IRanges(1e8, 1e8+10000)))
    Ideogram(genome = "hg19", xlabel = TRUE)

    画详细的gene model图

    画图时,数据可以来自OrganismDb,GRangesList,EnsDb,(TxDb)

    1、使用organismdb的数据

    library(Homo.sapiens)
    class(Homo.sapiens)

    data(genesymbol, package = "biovizBase")
    wh <- genesymbol[c("BRCA1", "NBR1")]
    wh <- range(wh, ignore.strand = TRUE)
    p.txdb <- autoplot(Homo.sapiens, which = wh)
    p.txdb
    autoplot(Homo.sapiens, which = wh, label.color = "black", color = "brown",
    fill = "brown")

    使用gap.geom可以改变内含子的形状

    autoplot(Homo.sapiens, which = wh, gap.geom = "chevron")
    autoplot(Homo.sapiens, which = wh, stat = "reduce")
    autoplot(Homo.sapiens, which = wh, columns = c("TXNAME", "GO"), names.expr = "TXNAME::GO")

    2、使用txdb的数据

    因为TxDb没有基因的symbol信息,但是可以根据别的数据的信息来画图

    library(TxDb.Hsapiens.UCSC.hg19.knownGene)
    txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene
    autoplot(txdb, which = wh)

    3、使用ensdb的数据

    source("http://bioconductor.org/biocLite.R")
    biocLite("EnsDb.Hsapiens.v75")
    library(EnsDb.Hsapiens.v75)
    ensdb <- EnsDb.Hsapiens.v75

    指定具体的基因

    autoplot(ensdb, GenenameFilter("PHKG2"))
    autoplot(ensdb, ~ symbol == "PHKG2", names.expr="gene_name")

    指定区间

    gr <- GRanges(seqnames = 16, IRanges(30768000, 30770000), strand = "*")
    autoplot(ensdb, GRangesFilter(gr), names.expr = "gene_name")

    使用基因id

    autoplot(ensdb, GeneIdFilter(c("ENSG00000196118", "ENSG00000156873")))

    4、使用GRangesList的数据

    library(biovizBase)
    gr.txdb <- crunch(txdb, which = wh)
    colnames(values(gr.txdb))[4] <- "model"

    grl <- split(gr.txdb, gr.txdb$tx_id)
    names(grl) <- sample(LETTERS, size = length(grl), replace = TRUE)
    grl

    autoplot(grl, aes(type = model))
    ggplot() + geom_alignment(grl, type = "model")

    添加reference到track

    library(BSgenome.Hsapiens.UCSC.hg19)
    bg <- BSgenome.Hsapiens.UCSC.hg19
    p.bg <- autoplot(bg, which = wh)

    p.bg
    p.bg + zoom(1/100)
    p.bg + zoom(1/1000)
    p.bg + zoom(1/2500)

    autoplot(bg, which = resize(wh, width = width(wh)/2000), geom = "segment")

    添加比对track

    fl.bam <- system.file("extdata", "wg-brca1.sorted.bam", package = "biovizBase")
    wh <- keepSeqlevels(wh, "chr17")
    autoplot(fl.bam, which = wh)

    显示gap

    fl.bam <- system.file("extdata", "wg-brca1.sorted.bam", package = "biovizBase")
    wh <- keepSeqlevels(wh, "chr17")
    autoplot(fl.bam, which = resize(wh, width = width(wh)/10), geom = "gapped.pair")

    显示错配

    library(BSgenome.Hsapiens.UCSC.hg19)
    bg <- BSgenome.Hsapiens.UCSC.hg19
    p.mis <- autoplot(fl.bam, bsgenome = bg, which = wh, stat = "mismatch")
    p.mis

    显示覆盖情况

    autoplot(fl.bam, method = "estimate")
    autoplot(fl.bam, method = "estimate", which = paste0("chr", 17:18), aes(y = log(..coverage..)))

    添加变异信息

    可以使用variantanntoation来导入vcf文件,转换为vranges格式文件,

    library(VariantAnnotation)
    fl.vcf <- system.file("extdata", "17-1409-CEU-brca1.vcf.bgz", package="biovizBase")
    vcf <- readVcf(fl.vcf, "hg19")

    vr <- as(vcf[, 1:3], "VRanges")
    vr <- renameSeqlevels(vr, value = c("17" = "chr17"))

    gr17 <- GRanges("chr17", IRanges(41234400, 41234530))
    p.vr <- autoplot(vr, which = wh)

    p.vr
    p.vr + xlim(gr17)
    p.vr + xlim(gr17) + zoom()
    autoplot(vr, which = wh, geom = "rect", arrow = FALSE)

    gr17 <- GRanges("chr17", IRanges(41234415, 41234569))
    tks <- tracks(p.ideo, mismatch = p.mis, dbSNP = p.vr, ref = p.bg, gene = p.txdb,
    heights = c(2, 3, 3, 1, 4)) + xlim(gr17) + theme_tracks_sunset()
    tks
    tks + zoom()

    p.txdb + zoom(1/8)
    p.txdb + zoom(2)
    p.txdb + nextView()
    p.txdb + prevView()

    画圆形图

    画manhattan图

    增加关于染色体图布局的数据

    data(darned_hg19_subset500, package = "biovizBase")
    dn <- darned_hg19_subset500
    library(GenomicRanges)
    seqlengths(dn)
    head(dn)

    data(ideoCyto, package = "biovizBase")
    seqlengths(dn) <- seqlengths(ideoCyto$hg19)[names(seqlengths(dn))]
    dn <- keepSeqlevels(dn, paste0("chr", c(1:22, "X")))
    autoplot(dn, layout = "karyogram")

    autoplot(dn, layout = "karyogram", aes(color = exReg, fill = exReg))

    autoplot(dn, layout = "karyogram", aes(color = exReg, fill = exReg), alpha = 0.5) +
    scale_color_discrete(na.value = "brown")

    去除NA值

    dn.nona <- dn[!is.na(dnexReg)] dn.nonalevels <- as.numeric(factor(dn.nona$exReg))
    p.ylim <- autoplot(dn.nona, layout = "karyogram", aes(color = exReg, fill = exReg,
    ymin = (levels - 1) * 10/3,
    ymax = levels * 10 /3))
    p.ylim
    p.ylim + facet_wrap(~seqnames)

    也可以使用layout_karyogram来添加layer

    dn3 <- dn.nona[dn.nonaexReg == '3'] dn5 <- dn.nona[dn.nonaexReg == '5']
    dnC <- dn.nona[dn.nonaexReg == 'C'] dn.na <- dn[is.na(dnexReg)]

    autoplot(seqinfo(dn3), layout = "karyogram") +
    layout_karyogram(data = dn3, geom = "rect", ylim = c(0, 10/3), color = "#7fc97f") +
    layout_karyogram(data = dn5, geom = "rect", ylim = c(10/3, 10/32), color = "#beaed4") +
    layout_karyogram(data = dnC, geom = "rect", ylim = c(10/3
    2, 10), color = "#fdc086") +
    layout_karyogram(data = dn.na, geom = "rect", ylim = c(10, 10/3*4), color = "brown")

    dn$pvalue <- runif(length(dn)) * 10 #增加metadata
    p <- autoplot(seqinfo(dn)) + layout_karyogram(dn, aes(x = start, y = pvalue),
    geom = "point", color = "#fdc086")
    p
    p + theme_alignment()
    p + theme_clear()
    p + theme_null()

    library(GenomicRanges)
    set.seed(1)
    N <- 100
    gr <- GRanges(seqnames = sample(c("chr1", "chr2", "chr3"),
    size = N, replace = TRUE),
    IRanges(start = sample(1:300, size = N, replace = TRUE),
    width = sample(70:75, size = N,replace = TRUE)),
    strand = sample(c("+", "-"), size = N, replace = TRUE),
    value = rnorm(N, 10, 3), score = rnorm(N, 100, 30),
    sample = sample(c("Normal", "Tumor"),
    size = N, replace = TRUE),
    pair = sample(letters, size = N,
    replace = TRUE))
    seqlengths(gr) <- c(400, 1000, 500)
    autoplot(gr)

    autoplot(gr) + theme_genome()

    相关文章

      网友评论

        本文标题:genomicranges的学习

        本文链接:https://www.haomeiwen.com/subject/mzuexqtx.html