参考:生信技能树
#富集分析
rm(list=ls())
library(ggplot2)
library(clusterProfiler)
library(org.Hs.eg.db)
load('deg.Rdata')
#由于enrichKEGG()需要输入的基因名格式为ENTREZID,所以需要转换一下,这里使用clusterProfiler包的bitr()函数
#提取包中的标准基因名(SYMBOL)与ENTREZID的对应关系
df <- bitr(unique(deg$symbol), fromType = "SYMBOL",
toType = c( "ENTREZID"),
OrgDb = org.Hs.eg.db)
library(clusterProfiler)
deg=merge(deg,df,by.y='SYMBOL',by.x='symbol')
save(deg,file='deg.Rdata')

library(clusterProfiler)
load('deg.Rdata')
gene_up <- deg[deg$change=="UP","ENTREZID"]
gene_down <- deg[deg$change=="DOWN","ENTREZID"]
##kegg.up
kk.up <- enrichKEGG(gene = gene_up,
organism = "hsa",
pvalueCutoff = 0.9,
qvalueCutoff = 0.9)
head(kk.up)
kegg_up_dt <- as.data.frame(kk.up)
##kegg.down
kk.down <- enrichKEGG(gene = gene_down,
organism = "hsa",
pvalueCutoff = 0.9,
qvalueCutoff = 0.9)
head(kk.down)
kegg_down_dt <- as.data.frame(kk.down)
##kegg.diff
kegg_plot <- function(up_kegg,down_kegg){
dat=rbind(up_kegg,down_kegg)
dat$pvalue <- -log10(dat$pvalue)
dat$pvalue <- dat$pvalue*dat$group
dat=dat[order(dat$pvalue,decreasing = F),]
ggplot(dat, aes(x=reorder(Description,order(pvalue,decreasing= F)),y=pvalue, fill=group)) +
#x轴按对应的pvalue值从大到小排列pathway的Description
geom_bar(stat='identity') +
#设置柱状图高低直接为数值大小,而不是counts
scale_fill_gradient(low="blue",high = "red", guide = F) +
scale_x_discrete(name="pathway names") +
#针对字符型轴标签注释
scale_y_continuous(name="log10P-value") +
#针对连续型轴标题注释
coord_flip() + theme_bw() + theme(plot.title = element_text(hjust = 0.5)) +
ggtitle("pathway enrichment")
}
up_kegg <- kegg_up_dt[kegg_up_dt$pvalue<0.05,];up_kegg$group <- -1
down_kegg <- kegg_down_dt[kegg_down_dt$pvalue<0.05,];down_kegg$group <- 1
kegg_plot(up_kegg,down_kegg)

### GO database analysis
### 做GO数据集超几何分布检验分析,重点在结果的可视化及生物学意义的理解。
{
g_list=list(gene_up=gene_up,
gene_down=gene_down,
gene_diff=gene_diff)
# 因为go数据库非常多基因集,所以运行速度会很慢。
if(F){
go_enrich_results <- lapply( g_list , function(gene) {
lapply( c('BP','MF','CC') , function(ont) {
cat(paste('Now process ',ont ))
ego <- enrichGO(gene = gene,
universe = gene_all,
OrgDb = org.Hs.eg.db,
ont = ont ,
pAdjustMethod = "BH",
pvalueCutoff = 0.99,
qvalueCutoff = 0.99,
readable = TRUE)
print( head(ego) )
return(ego)
})
})
save(go_enrich_results,file = 'go_enrich_results.Rdata')
}
# 只有第一次需要运行,就保存结果哈,下次需要探索结果,就载入即可。
load(file = 'go_enrich_results.Rdata')
n1= c('gene_up','gene_down','gene_diff')
n2= c('BP','MF','CC')
for (i in 1:3){
for (j in 1:3){
fn=paste0('dotplot_',n1[i],'_',n2[j],'.png')
cat(paste0(fn,'\n'))
png(fn,res=150,width = 1080)
print( dotplot(go_enrich_results[[i]][[j]] ))
dev.off()
}
}
}
电脑卡住了 先做笔记吧。。。
参考 生信技能树 和 小贝学生信
网友评论