美文网首页
玩转单细胞(4):单细胞相关性

玩转单细胞(4):单细胞相关性

作者: KS科研分享与服务 | 来源:发表于2023-01-02 12:58 被阅读0次

    参考文献:

    (Reference:Immunophenotyping of COVID-19 and influenza highlights the role of type I interferons in development of severe COVID-19)

    看到一篇文献,做的单细胞细胞类型间的相关性,之前有小伙伴也问过这个小问题,这里简单演示一下:至于选择多少基因,自己决定。或者也可以自己定义基因集。

    
    library(Seurat)
    library(pheatmap)
    Idents(mouse_data)<- mouse_data$celltype
    av.exp<- AverageExpression(mouse_data)$RNA
    # av.exp<- av.exp[which(row.names(av.exp)%in% features),]
    
    features=names(tail(sort(apply(av.exp, 1, sd)),2000))
    av.exp<- av.exp[which(row.names(av.exp)%in% features),]
    av.exp <- cor(av.exp, method= "spearman")
    pheatmap::pheatmap(av.exp)
    

    做一个分析和一个图,就是为了某种意义,没有意义作甚呢?根据那个文献,他做的目的是为了疾病和正常组细胞转录层面的区别。这里我们将性别和细胞类型结合,做一下相关看看(我们的数据是没有意义的,所以结果也是如此)!

    
    library(tidyr)
    colnames(mouse_data@meta.data)
    mouse_data@meta.data <- unite(mouse_data@meta.data, 
                                  "sex_celltype", 
                                  sex, celltype, 
                                  remove = FALSE)
    
    
    Idents(mouse_data)<- mouse_data$sex_celltype
    exp<- AverageExpression(mouse_data)$RNA
    features=names(tail(sort(apply(exp, 1, sd)),2000))
    exp<- exp[which(row.names(exp)%in% features),]
    exp <- cor(exp, method= "spearman")
    
    #行列注释
    annotation_col = data.frame(
      celltype = c("PMN(3)","PMN(2)","PMN(1)", "PMN(0)" ,"PMN(5)" ,"PMN(6)", "PMN(4)", "PMN(7)",
                   "PMN(2)", "PMN(1)", "PMN(6)", "PMN(3)" ,"PMN(0)" ,"PMN(5)" ,"PMN(4)" ,"PMN(7)"),
      Sex = c(rep("F",8),rep("M",8))
    )
    
    row.names(annotation_col) <- colnames(exp)
    
    
    annotation_row = data.frame(
      celltype = c("PMN(3)","PMN(2)","PMN(1)", "PMN(0)" ,"PMN(5)" ,"PMN(6)", "PMN(4)", "PMN(7)",
                   "PMN(2)", "PMN(1)", "PMN(6)", "PMN(3)" ,"PMN(0)" ,"PMN(5)" ,"PMN(4)" ,"PMN(7)"),
      Sex = c(rep("F",8),rep("M",8))
    )
    row.names(annotation_row) <- rownames(exp)
    
    
    #做热图
    pheatmap::pheatmap(exp, annotation_col = annotation_col,
                       annotation_row = annotation_row, 
                       color = rev(RColorBrewer::brewer.pal(n = 10, name = "RdBu")))
    
    

    以上就是这期全部内容了,希望对你有帮助,觉得有用的,分享一下,点个赞、点一下再看呗,谢谢支持!更多精彩内容请至我的公众号---KS科研分享与服务

    相关文章

      网友评论

          本文标题:玩转单细胞(4):单细胞相关性

          本文链接:https://www.haomeiwen.com/subject/ndghcdtx.html