美文网首页
P综合问题

P综合问题

作者: 简洁心飞 | 来源:发表于2019-02-13 14:29 被阅读0次

    特此申明,内容源于网络,此处仅为招录,感谢作者分享!

    1. 寻求帮助
    dir(obj)            # 简单的列出对象obj所包含的方法名称,返回一个字符串列表
    help(obj.func)      # 查询obj.func的具体介绍和用法
    
    2. 判断类型的三种方法,推荐第三种
    if type(L) == type([]):
        print("L is list")
    if type(L) == list:
        print("L is list")
    if isinstance(L, list):
        print("L is list")
    
    3. Python数据类型:哈希类型、不可哈希类型
    # 哈希类型,即在原地不能改变的变量类型,不可变类型。可利用hash函数查看其hash值,也可以作为字典的key
    "数字类型:int, float, decimal.Decimal, fractions.Fraction, complex"
    "字符串类型:str, bytes"
    "元组:tuple"
    "冻结集合:frozenset"
    "布尔类型:True, False"
    "None"
    # 不可hash类型:原地可变类型:list、dict和set。它们不可以作为字典的key。
    
    4. 数字常量
    1234, -1234, 0, 999999999                    # 整数
    1.23, 1., 3.14e-10, 4E210, 4.0e+210          # 浮点数
    0o177, 0x9ff, 0X9FF, 0b101010                # 八进制、十六进制、二进制数字
    3+4j, 3.0+4.0j, 3J                           # 复数常量,也可以用complex(real, image)来创建
    hex(I), oct(I), bin(I)                       # 将十进制数转化为十六进制、八进制、二进制表示的“字符串”
    int(string, base)                            # 将字符串转化为整数,base为进制数
    # 2.x中,有两种整数类型:一般整数(32位)和长整数(无穷精度)。可以用l或L结尾,迫使一般整数成为长整数
    float('inf'), float('-inf'), float('nan')    # 无穷大, 无穷小, 非数.
    
    5. 表达式与操作符
    yield x                                      # 生成器函数发送协议
    lambda args: expression                      # 生成匿名函数
    x if y else z                                # 三元选择表达式
    x and y, x or y, not x                       # 逻辑与、逻辑或、逻辑非
    x in y, x not in y                           # 成员对象测试
    x is y, x is not y                           # 对象实体测试
    x<y, x<=y, x>y, x>=y, x==y, x!=y             # 大小比较,集合子集或超集值相等性操作符
    1 < a < 3                                    # Python中允许连续比较
    x|y, x&y, x^y                                # 位或、位与、位异或
    x<<y, x>>y                                   # 位操作:x左移、右移y位
    +, -, *, /, //, %, **                        # 真除法、floor除法:返回不大于真除法结果的整数值、取余、幂运算
    -x, +x, ~x                                   # 一元减法、识别、按位求补(取反)
    x[i], x[i:j:k]                               # 索引、分片
    int(3.14), float(3)                          # 强制类型转换
    
    6. 整数可以利用bit_length函数测试所占的位数
    a = 1;       a.bit_length()    # 1
    a = 1024;    a.bit_length()    # 11
    
    7. repr和str显示格式的区别
    """
    repr格式:默认的交互模式回显,产生的结果看起来它们就像是代码。
    str格式:打印语句,转化成一种对用户更加友好的格式。
    """
    
    8. 数字相关的模块
    # math模块
    # Decimal模块:小数模块
        import decimal
        from decimal import Decimal
        Decimal("0.01") + Decimal("0.02")        # 返回Decimal("0.03")
        decimal.getcontext().prec = 4            # 设置全局精度为4 即小数点后边4位
    # Fraction模块:分数模块
        from fractions import Fraction
        x = Fraction(4, 6)                       # 分数类型 4/6
        x = Fraction("0.25")                     # 分数类型 1/4 接收字符串类型的参数
    
    9. 集合set
    """
    set是一个无序不重复元素集, 基本功能包括关系测试和消除重复元素。
    set支持union(联合), intersection(交), difference(差)和symmetric difference(对称差集)等数学运算。
    set支持x in set, len(set), for x in set。
    set不记录元素位置或者插入点, 因此不支持indexing, slicing, 或其它类序列的操作
    """
    s = set([3,5,9,10])                          # 创建一个数值集合,返回{3, 5, 9, 10}
    t = set("Hello")                             # 创建一个字符的集合,返回{'l', 'H', 'e', 'o'}
    a = t | s;    t.union(s)                     # t 和 s的并集
    b = t & s;    t.intersection(s)              # t 和 s的交集
    c = t – s;    t.difference(s)                # 求差集(项在t中, 但不在s中)
    d = t ^ s;    t.symmetric_difference(s)      # 对称差集(项在t或s中, 但不会同时出现在二者中)
    t.add('x');   t.remove('H')                  # 增加/删除一个item
    s.update([10,37,42])                         # 利用[......]更新s集合
    x in s,  x not in s                          # 集合中是否存在某个值
    s.issubset(t);      s <= t                   # 测试是否 s 中的每一个元素都在 t 中
    s.issuperset(t);    s >= t                   # 测试是否 t 中的每一个元素都在 s 中 
    s.copy(); 
    s.discard(x);                                # 删除s中x
    s.clear()                                    # 清空s
    {x**2 for x in [1, 2, 3, 4]}                 # 集合解析,结果:{16, 1, 4, 9}
    {x for x in 'spam'}                          # 集合解析,结果:{'a', 'p', 's', 'm'}
    
    10. 集合frozenset,不可变对象
    """
    set是可变对象,即不存在hash值,不能作为字典的键值。同样的还有list等(tuple是可以作为字典key的)
    frozenset是不可变对象,即存在hash值,可作为字典的键值
    frozenset对象没有add、remove等方法,但有union/intersection/difference等方法
    """
    a = set([1, 2, 3])
    b = set()
    b.add(a)                     # error: set是不可哈希类型
    b.add(frozenset(a))          # ok,将set变为frozenset,可哈希
    
    11. 布尔类型bool
    type(True)                   # 返回<class 'bool'>
    isinstance(False, int)       # bool类型属于整型,所以返回True
    True == 1; True is 1         # 输出(True, False)
    
    12. 动态类型简介
    """
    变量名通过引用,指向对象。
    Python中的“类型”属于对象,而不是变量,每个对象都包含有头部信息,比如"类型标示符" "引用计数器"等
    """
    #共享引用及在原处修改:对于可变对象,要注意尽量不要共享引用!
    #共享引用和相等测试:
        L = [1], M = [1], L is M            # 返回False
        L = M = [1, 2, 3], L is M           # 返回True,共享引用
    #增强赋值和共享引用:普通+号会生成新的对象,而增强赋值+=会在原处修改
        L = M = [1, 2]
        L = L + [3, 4]                      # L = [1, 2, 3, 4], M = [1, 2]
        L += [3, 4]                         # L = [1, 2, 3, 4], M = [1, 2, 3, 4]
    
    13. 常见字符串常量和表达式
    S = ''                                  # 空字符串
    S = "spam’s"                            # 双引号和单引号相同
    S = "s\np\ta\x00m"                      # 转义字符
    S = """spam"""                          # 三重引号字符串,一般用于函数说明
    S = r'\temp'                            # Raw字符串,不会进行转义,抑制转义
    S = b'Spam'                             # Python3中的字节字符串
    S = u'spam'                             # Python2.6中的Unicode字符串
    s1+s2, s1*3, s[i], s[i:j], len(s)       # 字符串操作
    'a %s parrot' % 'kind'                  # 字符串格式化表达式
    'a {1} {0} parrot'.format('kind', 'red')# 字符串格式化方法
    for x in s: print(x)                    # 字符串迭代,成员关系
    [x*2 for x in s]                        # 字符串列表解析
    ','.join(['a', 'b', 'c'])               # 字符串输出,结果:a,b,c
    
    14. 内置str处理函数
    str1 = "stringobject"
    str1.upper(); str1.lower(); str1.swapcase(); str1.capitalize(); str1.title()        # 全部大写,全部小写、大小写转换,首字母大写,每个单词的首字母都大写
    str1.ljust(width)                       # 获取固定长度,左对齐,右边不够用空格补齐
    str1.rjust(width)                       # 获取固定长度,右对齐,左边不够用空格补齐
    str1.center(width)                      # 获取固定长度,中间对齐,两边不够用空格补齐
    str1.zfill(width)                       # 获取固定长度,右对齐,左边不足用0补齐
    str1.find('t',start,end)                # 查找字符串,可以指定起始及结束位置搜索
    str1.rfind('t')                         # 从右边开始查找字符串
    str1.count('t')                         # 查找字符串出现的次数
    #上面所有方法都可用index代替,不同的是使用index查找不到会抛异常,而find返回-1
    str1.replace('old','new')               # 替换函数,替换old为new,参数中可以指定maxReplaceTimes,即替换指定次数的old为new
    str1.strip();                           # 默认删除空白符
    str1.strip('d');                        # 删除str1字符串中开头、结尾处,位于 d 删除序列的字符
    str1.lstrip();
    str1.lstrip('d');                       # 删除str1字符串中开头处,位于 d 删除序列的字符
    str1.rstrip();
    str1.rstrip('d')                        # 删除str1字符串中结尾处,位于 d 删除序列的字符
    str1.startswith('start')                # 是否以start开头
    str1.endswith('end')                    # 是否以end结尾
    str1.isalnum(); str1.isalpha(); str1.isdigit(); str1.islower(); str1.isupper()      # 判断字符串是否全为字符、数字、小写、大写
    
    15. 三重引号编写多行字符串块,并且在代码折行处嵌入换行字符\n
    mantra = """hello world
            hello python
            hello my friend"""
    # mantra为"""hello world \n hello python \n hello my friend"""
    
    16. 索引和分片
    S[0], S[len(S)–1], S[-1]                # 索引
    S[1:3], S[1:], S[:-1], S[1:10:2]        # 分片,第三个参数指定步长,如`S[1:10:2]`是从1位到10位没隔2位获取一个字符。
    
    17. 字符串转换工具
    int('42'), str(42)                      # 返回(42, '42')
    float('4.13'), str(4.13)                # 返回(4.13, '4.13')
    ord('s'), chr(115)                      # 返回(115, 's')
    int('1001', 2)                          # 将字符串作为二进制数字,转化为数字,返回9
    bin(13), oct(13), hex(13)               # 将整数转化为二进制/八进制/十六进制字符串,返回('0b1101', '015', '0xd')
    
    18. 另类字符串连接
    name = "wang" "hong"                    # 单行,name = "wanghong"
    name = "wang" \
           "hong"                          # 多行,name = "wanghong"
    
    19. Python中的字符串格式化实现1--字符串格式化表达式
    """
    基于C语言的'print'模型,并且在大多数的现有的语言中使用。
    通用结构:%[(name)][flag][width].[precision]typecode
    """
    "this is %d %s bird" % (1, 'dead')                          # 一般的格式化表达式
    "%s---%s---%s" % (42, 3.14, [1, 2, 3])                      # 字符串输出:'42---3.14---[1, 2, 3]'
    "%d...%6d...%-6d...%06d" % (1234, 1234, 1234, 1234)         # 对齐方式及填充:"1234...  1234...1234  ...001234"
    x = 1.23456789
    "%e | %f | %g" % (x, x, x)                                  # 对齐方式:"1.234568e+00 | 1.234568 | 1.23457"
    "%6.2f*%-6.2f*%06.2f*%+6.2f" % (x, x, x, x)                 # 对齐方式:'  1.23*1.23  *001.23* +1.23'
    "%(name1)d---%(name2)s" % {"name1":23, "name2":"value2"}    # 基于字典的格式化表达式
    "%(name)s is %(age)d" % vars()                              # vars()函数调用返回一个字典,包含了所有本函数调用时存在的变量
    
    20. Python中的字符串格式化实现2--字符串格式化调用方法
    # 普通调用
    "{0}, {1} and {2}".format('spam', 'ham', 'eggs')            # 基于位置的调用
    "{motto} and {pork}".format(motto = 'spam', pork = 'ham')   # 基于Key的调用
    "{motto} and {0}".format('ham', motto = 'spam')             # 混合调用
    # 添加键 属性 偏移量 (import sys)
    "my {1[spam]} runs {0.platform}".format(sys, {'spam':'laptop'})                 # 基于位置的键和属性
    "{config[spam]} {sys.platform}".format(sys = sys, config = {'spam':'laptop'})   # 基于Key的键和属性
    "first = {0[0]}, second = {0[1]}".format(['A', 'B', 'C'])                       # 基于位置的偏移量
    # 具体格式化
    "{0:e}, {1:.3e}, {2:g}".format(3.14159, 3.14159, 3.14159)   # 输出'3.141590e+00, 3.142e+00, 3.14159'
    "{fieldname:format_spec}".format(......)
    # 说明:
    """
        fieldname是指定参数的一个数字或关键字, 后边可跟可选的".name"或"[index]"成分引用
        format_spec ::=  [[fill]align][sign][#][0][width][,][.precision][type]
        fill        ::=  <any character>              #填充字符
        align       ::=  "<" | ">" | "=" | "^"        #对齐方式
        sign        ::=  "+" | "-" | " "              #符号说明
        width       ::=  integer                      #字符串宽度
        precision   ::=  integer                      #浮点数精度
        type        ::=  "b" | "c" | "d" | "e" | "E" | "f" | "F" | "g" | "G" | "n" | "o" | "s" | "x" | "X" | "%"
    """
    # 例子:
        '={0:10} = {1:10}'.format('spam', 123.456)    # 输出'=spam       =    123.456'
        '={0:>10}='.format('test')                    # 输出'=      test='
        '={0:<10}='.format('test')                    # 输出'=test      ='
        '={0:^10}='.format('test')                    # 输出'=   test   ='
        '{0:X}, {1:o}, {2:b}'.format(255, 255, 255)   # 输出'FF, 377, 11111111'
        'My name is {0:{1}}.'.format('Fred', 8)       # 输出'My name is Fred    .'  动态指定参数
    
    21. 常用列表常量和操作
    L = [[1, 2], 'string', {}]                        # 嵌套列表
    L = list('spam')                                  # 列表初始化
    L = list(range(0, 4))                             # 列表初始化
    list(map(ord, 'spam'))                            # 列表解析
    len(L)                                            # 求列表长度
    L.count(value)                                    # 求列表中某个值的个数
    L.append(obj)                                     # 向列表的尾部添加数据,比如append(2),添加元素2
    L.insert(index, obj)                              # 向列表的指定index位置添加数据,index及其之后的数据后移
    L.extend(interable)                               # 通过添加iterable中的元素来扩展列表,比如extend([2]),添加元素2,注意和append的区别
    L.index(value, [start, [stop]])                   # 返回列表中值value的第一个索引
    L.pop([index])                                    # 删除并返回index处的元素,默认为删除并返回最后一个元素
    L.remove(value)                                   # 删除列表中的value值,只删除第一次出现的value的值
    L.reverse()                                       # 反转列表
    L.sort(cmp=None, key=None, reverse=False)         # 排序列表
    a = [1, 2, 3], b = a[10:]                         # 注意,这里不会引发IndexError异常,只会返回一个空的列表[]
    a = [], a += [1]                                  # 这里实在原有列表的基础上进行操作,即列表的id没有改变
    a = [], a = a + [1]
    
    22. 用切片来删除序列的某一段
    a = [1, 2, 3, 4, 5, 6, 7]
    a[1:4] = []                                       # a = [1, 5, 6, 7]
    a = [0, 1, 2, 3, 4, 5, 6, 7]
    del a[::2]                                        # 去除偶数项(偶数索引的),a = [1, 3, 5, 7]
    
    23. 常用字典常量和操作
    D = {}
    D = {'spam':2, 'tol':{'ham':1}}                   # 嵌套字典
    D = dict.fromkeys(['s', 'd'], 8)                  # {'s': 8, 'd': 8}
    D = dict(name = 'tom', age = 12)                  # {'age': 12, 'name': 'tom'}
    D = dict([('name', 'tom'), ('age', 12)])          # {'age': 12, 'name': 'tom'}
    D = dict(zip(['name', 'age'], ['tom', 12]))       # {'age': 12, 'name': 'tom'}
    D.keys(); D.values(); D.items()                   # 字典键、值以及键值对
    D.get(key, default)                               # get函数
    D.update(D_other)                                 # 合并字典,如果存在相同的键值,D_other的数据会覆盖掉D的数据
    D.pop(key, [D])                                   # 删除字典中键值为key的项,返回键值为key的值,如果不存在,返回默认值D,否则异常
    D.popitem()                                       # pop字典中随机的一项(一个键值对)
    D.setdefault(k[, d])                              # 设置D中某一项的默认值。如果k存在,则返回D[k],否则设置D[k]=d,同时返回D[k]。
    del D                                             # 删除字典
    del D['key']                                      # 删除字典的某一项
    if key in D:   if key not in D:                   # 测试字典键是否存在
    # 字典注意事项:(1)对新索引赋值会添加一项(2)字典键不一定非得是字符串,也可以为任何的不可变对象
    # 不可变对象:调用对象自身的任意方法,也不会改变该对象自身的内容,这些方法会创建新的对象并返回。
    # 字符串、整数、tuple都是不可变对象,dict、set、list都是可变对象
    D[(1,2,3)] = 2                                    # tuple作为字典的key
    
    24. 字典解析
    D = {k:8 for k in ['s', 'd']}                     # {'s': 8, 'd': 8}
    D = {k:v for (k, v) in zip(['name', 'age'], ['tom', 12])}       # {'age': 12, 'name': tom}
    
    25. 字典的特殊方法missing:当查找找不到key时,会执行该方法
    class Dict(dict):
        def __missing__(self, key):
            self[key] = []
            return self[key]
    dct = dict()
    dct["foo"].append(1)    # 这有点类似于collections.defalutdict
    dct["foo"]              # [1]
    
    26. 元组和列表的唯一区别在于元组是不可变对象,列表是可变对象
    a = [1, 2, 3]           # a[1] = 0, OK
    a = (1, 2, 3)           # a[1] = 0, Error
    a = ([1, 2])            # a[0][1] = 0, OK
    a = [(1, 2)]            # a[0][1] = 0, Error
    

    #######27. 元组的特殊语法: 逗号和圆括号

    D = (12)                # 此时D为一个整数 即D = 12
    D = (12, )              # 此时D为一个元组 即D = (12, )
    
    28. 文件基本操作
    output = open(r'C:\spam', 'w')          # 打开输出文件,用于写
    input = open('data', 'r')               # 打开输入文件,用于读。打开的方式可以为'w', 'r', 'a', 'wb', 'rb', 'ab'等
    fp.read([size])                         # size为读取的长度,以byte为单位
    fp.readline([size])                     # 读一行,如果定义了size,有可能返回的只是一行的一部分
    fp.readlines([size])                    # 把文件每一行作为一个list的一个成员,并返回这个list。其实它的内部是通过循环调用readline()来实现的。如果提供size参数,size是表示读取内容的总长。
    fp.readable()                           # 是否可读
    fp.write(str)                           # 把str写到文件中,write()并不会在str后加上一个换行符
    fp.writelines(seq)                      # 把seq的内容全部写到文件中(多行一次性写入)
    fp.writeable()                          # 是否可写
    fp.close()                              # 关闭文件。
    fp.flush()                              # 把缓冲区的内容写入硬盘
    fp.fileno()                             # 返回一个长整型的”文件标签“
    fp.isatty()                             # 文件是否是一个终端设备文件(unix系统中的)
    fp.tell()                               # 返回文件操作标记的当前位置,以文件的开头为原点
    fp.next()                               # 返回下一行,并将文件操作标记位移到下一行。把一个file用于for … in file这样的语句时,就是调用next()函数来实现遍历的。
    fp.seek(offset[,whence])                # 将文件打开操作标记移到offset的位置。whence为0表示从头开始计算,1表示以当前位置为原点计算。2表示以文件末尾为原点进行计算。
    fp.seekable()                           # 是否可以seek
    fp.truncate([size])                     # 把文件裁成规定的大小,默认的是裁到当前文件操作标记的位置。
    for line in open('data'): 
        print(line)                         # 使用for语句,比较适用于打开比较大的文件
    with open('data') as file:
        print(file.readline())              # 使用with语句,可以保证文件关闭
    with open('data') as file:
        lines = file.readlines()            # 一次读入文件所有行,并关闭文件
    open('f.txt', encoding = 'latin-1')     # Python3.x Unicode文本文件
    open('f.bin', 'rb')                     # Python3.x 二进制bytes文件
    # 文件对象还有相应的属性:buffer closed encoding errors line_buffering name newlines等
    
    29.真与假,其他
    # Python中的真假值含义:1. 数字如果非零,则为真,0为假。 2. 其他对象如果非空,则为真
    # 通常意义下的类型分类:1. 数字、序列、映射。 2. 可变类型和不可变类型
    
    1. 赋值语句的形式
    spam = 'spam'                          # 基本形式
    spam, ham = 'spam', 'ham'              # 元组赋值形式
    [spam, ham] = ['s', 'h']               # 列表赋值形式
    a, b, c, d = 'abcd'                    # 序列赋值形式
    a, *b, c = 'spam'                      # 序列解包形式(Python3.x中才有)
    spam = ham = 'no'                      # 多目标赋值运算,涉及到共享引用
    spam += 42                             # 增强赋值,涉及到共享引用
    
    1. 序列赋值 序列解包
    [a, b, c] = (1, 2, 3)                  # a = 1, b = 2, c = 3
    a, b, c, d = "spam"                    # a = 's', b = 'p', c = 'a', d = 'm'
    a, b, c = range(3)                     # a = 0, b = 1, c = 2
    a, *b = [1, 2, 3, 4]                   # a = 1, b = [2, 3, 4]
    *a, b = [1, 2, 3, 4]                   # a = [1, 2, 3], b = 4
    a, *b, c = [1, 2, 3, 4]                # a = 1, b = [2, 3], c = 4
    # 带有*时 会优先匹配*之外的变量 如
    a, *b, c = [1, 2]                      # a = 1, c = 2, b = []
    
    1. print函数原型
    print(value, ..., sep=' ', end='\n', file=sys.stdout, flush=False)
    # 流的重定向
    print('hello world')                   # 等于sys.stdout.write('hello world')
    temp = sys.stdout                      # 原有流的保存
    sys.stdout = open('log.log', 'a')      # 流的重定向
    print('hello world')                   # 写入到文件log.log
    sys.stdout.close()
    sys.stdout = temp                      # 原有流的复原
    
    1. Python中and或or总是返回对象(左边的对象或右边的对象) 且具有短路求值的特性
    1 or 2 or 3                            # 返回 1
    1 and 2 and 3                          # 返回 3
    
    1. if/else三元表达符(if语句在行内)
    A = 1 if X else 2
    A = 1 if X else (2 if Y else 3)
    # 也可以使用and-or语句(一条语句实现多个if-else)
    a = 6
    result = (a > 20 and "big than 20" or a > 10 and "big than 10" or a > 5 and "big than 5")    # 返回"big than 5"
    
    1. Python的while语句或者for语句可以带else语句 当然也可以带continue/break/pass语句
    while a > 1:
        anything
    else:
        anything
    # else语句会在循环结束后执行,除非在循环中执行了break,同样的还有for语句
    for i in range(5):
        anything
    else:
        anything
    
    1. for循环的元组赋值
    for (a, b) in [(1, 2), (3, 4)]:                   # 最简单的赋值
    for ((a, b), c) in [((1, 2), 3), ((4, 5), 6)]:    # 自动解包赋值
    for ((a, b), c) in [((1, 2), 3), ("XY", 6)]:      # 自动解包 a = X, b = Y, c = 6
    for (a, *b) in [(1, 2, 3), (4, 5, 6)]:            # 自动解包赋值
    
    1. 列表解析语法
    M = [[1,2,3], [4,5,6], [7,8,9]]
    res = [sum(row) for row in M]                     # G = [6, 15, 24] 一般的列表解析 生成一个列表
    res = [c * 2 for c in 'spam']                     # ['ss', 'pp', 'aa', 'mm']
    res = [a * b for a in [1, 2] for b in [4, 5]]     # 多解析过程 返回[4, 5, 8, 10]
    res = [a for a in [1, 2, 3] if a < 2]             # 带判断条件的解析过程
    res = [a if a > 0 else 0 for a in [-1, 0, 1]]     # 带判断条件的高级解析过程
    # 两个列表同时解析:使用zip函数
    for teama, teamb in zip(["Packers", "49ers"], ["Ravens", "Patriots"]):
        print(teama + " vs. " + teamb)
    # 带索引的列表解析:使用enumerate函数
    for index, team in enumerate(["Packers", "49ers", "Ravens", "Patriots"]):
        print(index, team)                            # 输出0, Packers \n 1, 49ers \n ......
    
    1. 生成器表达式
    G = (sum(row) for row in M)                       # 使用小括号可以创建所需结果的生成器generator object
    next(G), next(G), next(G)                         # 输出(6, 15, 24)
    G = {sum(row) for row in M}                       # G = {6, 15, 24} 解析语法还可以生成集合和字典
    G = {i:sum(M[i]) for i in range(3)}               # G = {0: 6, 1: 15, 2: 24}
    
    1. 文档字符串:出现在Module的开端以及其中函数或类的开端 使用三重引号字符串
    """
    module document
    """
    def func():
        """
        function document
        """
        print()
    class Employee(object):
        """
        class document
        """
        print()
    print(func.__doc__)                # 输出函数文档字符串
    print(Employee.__doc__)            # 输出类的文档字符串
    
    1. 命名惯例
    """
    以单一下划线开头的变量名(_X)不会被from module import*等语句导入
    前后有两个下划线的变量名(__X__)是系统定义的变量名,对解释器有特殊意义
    以两个下划线开头但不以下划线结尾的变量名(__X)是类的本地(私有)变量
    """
    
    1. 列表解析 in成员关系测试 map sorted zip enumerate内置函数等都使用了迭代协议
    'first line' in open('test.txt')   # in测试 返回True或False
    list(map(str.upper, open('t')))    # map内置函数
    sorted(iter([2, 5, 8, 3, 1]))      # sorted内置函数
    list(zip([1, 2], [3, 4]))          # zip内置函数 [(1, 3), (2, 4)]
    
    1. del语句: 手动删除某个变量
    del X
    
    1. 获取列表的子表的方法
    x = [1,2,3,4,5,6]
    x[:3]                              # 前3个[1,2,3]
    x[1:5]                             # 中间4个[2,3,4,5]
    x[-3:]                             # 最后3个[4,5,6]
    x[::2]                             # 奇数项[1,3,5]
    x[1::2]                            # 偶数项[2,4,6]
    
    1. 手动迭代:iter和next
    L = [1, 2]
    I = iter(L)                        # I为L的迭代器
    I.next()                           # 返回1
    I.next()                           # 返回2
    I.next()                           # Error:StopIteration
    
    1. Python中的可迭代对象
    1.range迭代器
    2.map、zip和filter迭代器
    3.字典视图迭代器:D.keys()), D.items()等
    4.文件类型
    
    1. 函数相关的语句和表达式\
    myfunc('spam')                     # 函数调用
    def myfunc():                      # 函数定义
    return None                        # 函数返回值
    global a                           # 全局变量
    nonlocal x                         # 在函数或其他作用域中使用外层(非全局)变量
    yield x                            # 生成器函数返回
    lambda                             # 匿名函数
    
    1. Python函数变量名解析:LEGB原则
    """
    local(functin) --> encloseing function locals --> global(module) --> build-in(python)
    说明:以下边的函数maker为例 则相对于action而言 X为Local N为Encloseing
    """
    
    1. 嵌套函数举例:工厂函数
    def maker(N):
        def action(X):
            return X ** N
        return action
    f = maker(2)                       # pass 2 to N
    f(3)                               # 9, pass 3 to X
    
    1. 嵌套函数举例:lambda实例
    def maker(N):
        action = (lambda X: X**N)
        return action
    f = maker(2)                       # pass 2 to N
    f(3)                               # 9, pass 3 to X
    
    1. nonlocal和global语句的区别
    # nonlocal应用于一个嵌套的函数的作用域中的一个名称 例如:
    start = 100
    def tester(start):
        def nested(label):
            nonlocal start             # 指定start为tester函数内的local变量 而不是global变量start
            print(label, start)
            start += 3
        return nested
    # global为全局的变量 即def之外的变量
    def tester(start):
        def nested(label):
            global start               # 指定start为global变量start
            print(label, start)
            start += 3
        return nested
    
    1. 函数参数,不可变参数通过“值”传递,可变参数通过“引用”传递
    def f(a, b, c): print(a, b, c)
    f(1, 2, 3)                         # 参数位置匹配
    f(1, c = 3, b = 2)                 # 参数关键字匹配
    def f(a, b=1, c=2): print(a, b, c)
    f(1)                               # 默认参数匹配
    f(1, 2)                            # 默认参数匹配
    f(a = 1, c = 3)                    # 关键字参数和默认参数的混合
    # Keyword-Only参数:出现在*args之后 必须用关键字进行匹配
    def keyOnly(a, *b, c): print('')   # c就为keyword-only匹配 必须使用关键字c = value匹配
    def keyOnly(a, *, b, c): ......    # b c为keyword-only匹配 必须使用关键字匹配
    def keyOnly(a, *, b = 1): ......   # b有默认值 或者省略 或者使用关键字参数b = value
    
    1. 可变参数匹配: * 和 **
    def f(*args): print(args)          # 在元组中收集不匹配的位置参数
    f(1, 2, 3)                         # 输出(1, 2, 3)
    def f(**args): print(args)         # 在字典中收集不匹配的关键字参数
    f(a = 1, b = 2)                    # 输出{'a':1, 'b':2}
    def f(a, *b, **c): print(a, b, c)  # 两者混合使用
    f(1, 2, 3, x=4, y=5)               # 输出1, (2, 3), {'x':4, 'y':5}
    
    1. 函数调用时的参数解包: * 和 ** 分别解包元组和字典
    func(1, *(2, 3))  <==>  func(1, 2, 3)
    func(1, **{'c':3, 'b':2})  <==>  func(1, b = 2, c = 3)
    func(1, *(2, 3), **{'c':3, 'b':2})  <==>  func(1, 2, 3, b = 2, c = 3)
    
    1. 函数属性:(自己定义的)函数可以添加属性
    def func():.....
    func.count = 1                     # 自定义函数添加属性
    print.count = 1                    # Error 内置函数不可以添加属性
    
    1. 函数注解: 编写在def头部行 主要用于说明参数范围、参数类型、返回值类型等
    def func(a:'spam', b:(1, 10), c:float) -> int :
        print(a, b, c)
    func.__annotations__               # {'c':<class 'float'>, 'b':(1, 10), 'a':'spam', 'return':<class 'int'>}
    # 编写注解的同时 还是可以使用函数默认值 并且注解的位置位于=号的前边
    def func(a:'spam'='a', b:(1, 10)=2, c:float=3) -> int :
        print(a, b, c)
    
    1. 匿名函数:lambda
    f = lambda x, y, z : x + y + z     # 普通匿名函数,使用方法f(1, 2, 3)
    f = lambda x = 1, y = 1: x + y     # 带默认参数的lambda函数
    def action(x):                     # 嵌套lambda函数
        return (lambda y : x + y)
    f = lambda: a if xxx() else b      # 无参数的lambda函数,使用方法f()
    
    1. lambda函数与map filter reduce函数的结合
    list(map((lambda x: x + 1), [1, 2, 3]))              # [2, 3, 4]
    list(filter((lambda x: x > 0), range(-4, 5)))        # [1, 2, 3, 4]
    functools.reduce((lambda x, y: x + y), [1, 2, 3])    # 6
    functools.reduce((lambda x, y: x * y), [2, 3, 4])    # 24
    
    1. 生成器函数:yield VS return
    def gensquare(N):
        for i in range(N):
            yield i** 2                # 状态挂起 可以恢复到此时的状态
    for i in gensquare(5):             # 使用方法
        print(i, end = ' ')            # [0, 1, 4, 9, 16]
    x = gensquare(2)                   # x是一个生成对象
    next(x)                            # 等同于x.__next__() 返回0
    next(x)                            # 等同于x.__next__() 返回1
    next(x)                            # 等同于x.__next__() 抛出异常StopIteration
    
    1. 生成器表达式:小括号进行列表解析
    G = (x ** 2 for x in range(3))     # 使用小括号可以创建所需结果的生成器generator object
    next(G), next(G), next(G)          # 和上述中的生成器函数的返回值一致
    #(1)生成器(生成器函数/生成器表达式)是单个迭代对象
    G = (x ** 2 for x in range(4))
    I1 = iter(G)                       # 这里实际上iter(G) = G
    next(I1)                           # 输出0
    next(G)                            # 输出1
    next(I1)                           # 输出4
    #(2)生成器不保留迭代后的结果
    gen = (i for i in range(4))
    2 in gen                           # 返回True
    3 in gen                           # 返回True
    1 in gen                           # 返回False,其实检测2的时候,1已经就不在生成器中了,即1已经被迭代过了,同理2、3也不在了
    
    1. 本地变量是静态检测的
    X = 22                             # 全局变量X的声明和定义
    def test():
        print(X)                       # 如果没有下一语句 则该句合法 打印全局变量X
        X = 88                         # 这一语句使得上一语句非法 因为它使得X变成了本地变量 上一句变成了打印一个未定义的本地变量(局部变量)
        if False:                      # 即使这样的语句 也会把print语句视为非法语句 因为:
            X = 88                     # Python会无视if语句而仍然声明了局部变量X
    def test():                        # 改进
        global X                       # 声明变量X为全局变量
        print(X)                       # 打印全局变量X
        X = 88                         # 改变全局变量X
    
    1. 函数的默认值是在函数定义的时候实例化的 而不是在调用的时候 例子
    def foo(numbers=[]):               # 这里的[]是可变的
        numbers.append(9)    
        print(numbers)
    foo()                              # first time, like before, [9]
    foo()                              # second time, not like before, [9, 9]
    foo()                              # third time, not like before too, [9, 9, 9]
    # 改进:
    def foo(numbers=None):
        if numbers is None: numbers = []
        numbers.append(9)
        print(numbers)
    # 另外一个例子 参数的默认值为不可变的:
    def foo(count=0):                  # 这里的0是数字, 是不可变的
        count += 1
        print(count)
    foo()                              # 输出1
    foo()                              # 还是输出1
    foo(3)                             # 输出4
    foo()                              # 还是输出1
    
    1. 函数例子
    """数学运算类"""
    abs(x)                              # 求绝对值,参数可以是整型,也可以是复数,若参数是复数,则返回复数的模
    complex([real[, imag]])             # 创建一个复数
    divmod(a, b)                        # 分别取商和余数,注意:整型、浮点型都可以
    float([x])                          # 将一个字符串或数转换为浮点数。如果无参数将返回0.0
    int([x[, base]])                    # 将一个字符串或浮点数转换为int类型,base表示进制
    long([x[, base]])                   # 将一个字符串或浮点数转换为long类型
    pow(x, y)                           # 返回x的y次幂
    range([start], stop[, step])        # 产生一个序列,默认从0开始
    round(x[, n])                       # 四舍五入
    sum(iterable[, start])              # 对集合求和
    oct(x)                              # 将一个数字转化为8进制字符串
    hex(x)                              # 将一个数字转换为16进制字符串
    chr(i)                              # 返回给定int类型对应的ASCII字符
    unichr(i)                           # 返回给定int类型的unicode
    ord(c)                              # 返回ASCII字符对应的整数
    bin(x)                              # 将整数x转换为二进制字符串
    bool([x])                           # 将x转换为Boolean类型
    
    """集合类操作"""
    basestring()                        # str和unicode的超类,不能直接调用,可以用作isinstance判断
    format(value [, format_spec])       # 格式化输出字符串,格式化的参数顺序从0开始,如“I am {0},I like {1}”
    enumerate(sequence[, start=0])      # 返回一个可枚举的对象,注意它有第二个参数
    iter(obj[, sentinel])               # 生成一个对象的迭代器,第二个参数表示分隔符
    max(iterable[, args...][key])       # 返回集合中的最大值
    min(iterable[, args...][key])       # 返回集合中的最小值
    dict([arg])                         # 创建数据字典
    list([iterable])                    # 将一个集合类转换为另外一个集合类
    set()                               # set对象实例化
    frozenset([iterable])               # 产生一个不可变的set
    tuple([iterable])                   # 生成一个tuple类型
    str([object])                       # 转换为string类型
    sorted(iterable[, cmp[, key[, reverse]]])             # 集合排序
        L = [('b',2),('a',1),('c',3),('d',4)]
        sorted(L, key=lambda x: x[1], reverse=True)       # 使用Key参数和reverse参数
        sorted(L, key=lambda x: (x[0], x[1]))             # 使用key参数进行多条件排序,即如果x[0]相同,则比较x[1]
    
    """逻辑判断"""
    all(iterable)                       # 集合中的元素都为真的时候为真,特别的,若为空串返回为True
    any(iterable)                       # 集合中的元素有一个为真的时候为真,特别的,若为空串返回为False
    cmp(x, y)                           # 如果x < y ,返回负数;x == y, 返回0;x > y,返回正数
    
    """IO操作"""
    file(filename [, mode [, bufsize]]) # file类型的构造函数。
    input([prompt])                     # 获取用户输入,推荐使用raw_input,因为该函数将不会捕获用户的错误输入,意思是自行判断类型
    # 在 Built-in Functions 里有一句话是这样写的:Consider using the raw_input() function for general input from users.
    raw_input([prompt])                 # 设置输入,输入都是作为字符串处理
    open(name[, mode[, buffering]])     # 打开文件,与file有什么不同?推荐使用open
    
    """其他"""
    callable(object)                    # 检查对象object是否可调用
    classmethod(func)                   # 用来说明这个func是个类方法
    staticmethod(func)                  # 用来说明这个func为静态方法
    dir([object])                       # 不带参数时,返回当前范围内的变量、方法和定义的类型列表;带参数时,返回参数的属性、方法列表。
    help(obj)                           # 返回obj的帮助信息
    eval(expression)                    # 计算表达式expression的值,并返回
    exec(str)                           # 将str作为Python语句执行
    execfile(filename)                  # 用法类似exec(),不同的是execfile的参数filename为文件名,而exec的参数为字符串。
    filter(function, iterable)          # 构造一个序列,等价于[item for item in iterable if function(item)],function返回值为True或False的函数
        list(filter(bool, range(-3, 4)))# 返回[-3, -2, -1, 1, 2, 3], 没有0
    hasattr(object, name)               # 判断对象object是否包含名为name的特性
    getattr(object, name [, defalut])   # 获取一个类的属性
    setattr(object, name, value)        # 设置属性值
    delattr(object, name)               # 删除object对象名为name的属性
    globals()                           # 返回一个描述当前全局符号表的字典
    hash(object)                        # 如果对象object为哈希表类型,返回对象object的哈希值
    id(object)                          # 返回对象的唯一标识,一串数字
    isinstance(object, classinfo)       # 判断object是否是class的实例
        isinstance(1, int)              # 判断是不是int类型
        isinstance(1, (int, float))     # isinstance的第二个参数接受一个元组类型
    issubclass(class, classinfo)        # 判断class是否为classinfo的子类
    locals()                            # 返回当前的变量列表
    map(function, iterable, ...)        # 遍历每个元素,执行function操作
        list(map(abs, range(-3, 4)))    # 返回[3, 2, 1, 0, 1, 2, 3]
    next(iterator[, default])           # 类似于iterator.next()
    property([fget[, fset[, fdel[, doc]]]])           # 属性访问的包装类,设置后可以通过c.x=value等来访问setter和getter
    reduce(function, iterable[, initializer])         # 合并操作,从第一个开始是前两个参数,然后是前两个的结果与第三个合并进行处理,以此类推
        def add(x,y):return x + y 
        reduce(add, range(1, 11))                     # 返回55 (注:1+2+3+4+5+6+7+8+9+10 = 55)
        reduce(add, range(1, 11), 20)                 # 返回75
    reload(module)                      # 重新加载模块
    repr(object)                        # 将一个对象变幻为可打印的格式
    slice(start, stop[, step])          # 产生分片对象
    type(object)                        # 返回该object的类型
    vars([object])                      # 返回对象的变量名、变量值的字典
        a = Class();                    # Class为一个空类
        a.name = 'qi', a.age = 9
        vars(a)                         # {'name':'qi', 'age':9}
    zip([iterable, ...])                # 返回对应数组
        list(zip([1, 2, 3], [4, 5, 6])) # [(1, 4), (2, 5), (3, 6)]
        a = [1, 2, 3],  b = ["a", "b", "c"]
        z = zip(a, b)                   # 压缩:[(1, "a"), (2, "b"), (3, "c")]
        zip(*z)                         # 解压缩:[(1, 2, 3), ("a", "b", "c")]
    unicode(string, encoding, errors)   # 将字符串string转化为unicode形式,string为encoded
    
    1. Python模块搜索路径
    """
    (1)程序的主目录    (2)PYTHONPATH目录 (3)标准链接库目录 (4)任何.pth文件的内容
    """
    
    1. 查看全部的模块搜索路径
    import sys
    sys.path
    sys.argv                            # 获得脚本的参数
    sys.builtin_module_names            # 查找内建模块
    sys.platform                        # 返回当前平台 出现如: "win32" "linux" "darwin"等
    sys.modules                         # 查找已导入的模块
    sys.modules.keys()
    sys.stdout                          # stdout 和 stderr 都是类文件对象,但是它们都是只写的。它们都没有 read 方法,只有 write 方法
    sys.stdout.write("hello")
    sys.stderr
    sys.stdin
    
    1. 模块的使用代码
    import module1, module2             # 导入module1 使用module1.printer()
    from module1 import printer         # 导入module1中的printer变量 使用printer()
    from module1 import *               # 导入module1中的全部变量 使用不必添加module1前缀
    
    1. 重载模块reload: 这是一个内置函数 而不是一条语句
    from imp import reload
    reload(module)
    
    1. 模块的包导入:使用点号(.)而不是路径(dir1\dir2)进行导入
    import dir1.dir2.mod                # d导入包(目录)dir1中的包dir2中的mod模块 此时dir1必须在Python可搜索路径中
    from dir1.dir2.mod import *         # from语法的包导入
    
    1. init.py包文件:每个导入的包中都应该包含这么一个文件
    init.py包文件:每个导入的包中都应该包含这么一个文件
    
    1. 包相对导入:使用点号(.) 只能使用from语句
    from . import spam                  # 导入当前目录下的spam模块(Python2: 当前目录下的模块, 直接导入即可)
    from .spam import name              # 导入当前目录下的spam模块的name属性(Python2: 当前目录下的模块, 直接导入即可,不用加.)
    from .. import spam                 # 导入当前目录的父目录下的spam模块
    
    1. 包相对导入与普通导入的区别
    from string import *                # 这里导入的string模块为sys.path路径上的 而不是本目录下的string模块(如果存在也不是)
    from .string import *               # 这里导入的string模块为本目录下的(不存在则导入失败) 而不是sys.path路径上的
    
    1. 模块数据隐藏:最小化from*的破坏
    _X                                  # 变量名前加下划线可以防止from*导入时该变量名被复制出去
    __all__ = ['x', 'x1', 'x2']         # 使用__all__列表指定from*时复制出去的变量名(变量名在列表中为字符串形式)
    
    1. 可以使用name进行模块的单元测试:当模块为顶层执行文件时值为'main' 当模块被导入时为模块名
    if __name__ == '__main__':
        doSomething
    # 模块属性中还有其他属性,例如:
    __doc__                             # 模块的说明文档
    __file__                            # 模块文件的文件名,包括全路径
    __name__                            # 主文件或者被导入文件
    __package__                         # 模块所在的包
    
    1. import语句from语句的as扩展
    import modulename as name
    from modulename import attrname as name
    
    1. 得到模块属性的几种方法 假设为了得到name属性的值
    M.name
    M.__dict__['name']
    sys.modules['M'].name
    getattr(M, 'name')
    
    1. 最普通的类
    class C1(C2, C3):
        spam = 42                       # 数据属性
        def __init__(self, name):       # 函数属性:构造函数
            self.name = name
        def __del__(self):              # 函数属性:析构函数
            print("goodbey ", self.name)    
    I1 = C1('bob')
    
    1. Python的类没有基于参数的函数重载
    class FirstClass(object):
        def test(self, string):
            print(string)
        def test(self):                 # 此时类中只有一个test函数 即后者test(self) 它覆盖掉前者带参数的test函数
            print("hello world")
    
    1. 子类扩展超类: 尽量调用超类的方法
    class Manager(Person):
        def giveRaise(self, percent, bonus = .10):
            self.pay = int(self.pay*(1 + percent + bonus))     # 不好的方式 复制粘贴超类代码
            Person.giveRaise(self, percent + bonus)            # 好的方式 尽量调用超类方法
    
    1. 类内省工具
    bob = Person('bob')
    bob.__class__                       # <class 'Person'>
    bob.__class__.__name__              # 'Person'
    bob.__dict__                        # {'pay':0, 'name':'bob', 'job':'Manager'}
    
    1. 返回1中 数据属性spam是属于类 而不是对象
    I1 = C1('bob'); I2 = C2('tom')      # 此时I1和I2的spam都为42 但是都是返回的C1的spam属性
    C1.spam = 24                        # 此时I1和I2的spam都为24
    I1.spam = 3                         # 此时I1新增自有属性spam 值为3 I2和C1的spam还都为24
    
    1. 类方法调用的两种方式
    instance.method(arg...)
    class.method(instance, arg...)
    
    1. 抽象超类的实现方法
    # (1)某个函数中调用未定义的函数 子类中定义该函数
        def delegate(self):
            self.action()               # 本类中不定义action函数 所以使用delegate函数时就会出错
    # (2)定义action函数 但是返回异常
        def action(self):
            raise NotImplementedError("action must be defined")
    # (3)上述的两种方法还都可以定义实例对象 实际上可以利用@装饰器语法生成不能定义的抽象超类
        from abc import ABCMeta, abstractmethod
        class Super(metaclass = ABCMeta):
            @abstractmethod
            def action(self): pass
        x = Super()                     # 返回 TypeError: Can't instantiate abstract class Super with abstract methods action
    
    1. OOP和继承: "is-a"的关系
    class A(B):
        pass
    a = A()
    isinstance(a, B)                    # 返回True, A是B的子类 a也是B的一种
    # OOP和组合: "has-a"的关系
    pass
    # OOP和委托: "包装"对象 在Python中委托通常是以"__getattr__"钩子方法实现的, 这个方法会拦截对不存在属性的读取
    # 包装类(或者称为代理类)可以使用__getattr__把任意读取转发给被包装的对象
    class wrapper(object):
        def __init__(self, object):
            self.wrapped = object
        def __getattr(self, attrname):
            print('Trace: ', attrname)
            return getattr(self.wrapped, attrname)
    # 注:这里使用getattr(X, N)内置函数以变量名字符串N从包装对象X中取出属性 类似于X.__dict__[N]
    x = wrapper([1, 2, 3])
    x.append(4)                         # 返回 "Trace: append" [1, 2, 3, 4]
    x = wrapper({'a':1, 'b':2})
    list(x.keys())                      # 返回 "Trace: keys" ['a', 'b']
    
    
    1. 类的伪私有属性:使用__attr
    class C1(object):
        def __init__(self, name):
            self.__name = name          # 此时类的__name属性为伪私有属性 原理 它会自动变成self._C1__name = name
        def __str__(self):
            return 'self.name = %s' % self.__name
    I = C1('tom')
    print(I)                            # 返回 self.name = tom
    I.__name = 'jeey'                   # 这里无法访问 __name为伪私有属性
    I._C1__name = 'jeey'                # 这里可以修改成功 self.name = jeey
    
    1. 类方法是对象:无绑定类方法对象 / 绑定实例方法对象
    class Spam(object):
        def doit(self, message):
            print(message)
        def selfless(message)
            print(message)
    obj = Spam()
    x = obj.doit                        # 类的绑定方法对象 实例 + 函数
    x('hello world')
    x = Spam.doit                       # 类的无绑定方法对象 类名 + 函数
    x(obj, 'hello world')
    x = Spam.selfless                   # 类的无绑定方法函数 在3.0之前无效
    x('hello world')
    

    11.获取对象信息: 属性和方法

    a = MyObject()
    dir(a)                              # 使用dir函数
    hasattr(a, 'x')                     # 测试是否有x属性或方法 即a.x是否已经存在
    setattr(a, 'y', 19)                 # 设置属性或方法 等同于a.y = 19
    getattr(a, 'z', 0)                  # 获取属性或方法 如果属性不存在 则返回默认值0
    #这里有个小技巧,setattr可以设置一个不能访问到的属性,即只能用getattr获取
    setattr(a, "can't touch", 100)      # 这里的属性名带有空格,不能直接访问
    getattr(a, "can't touch", 0)        # 但是可以用getattr获取
    
    1. 为类动态绑定属性或方法: MethodType方法
    # 一般创建了一个class的实例后, 可以给该实例绑定任何属性和方法, 这就是动态语言的灵活性
    class Student(object):
        pass
    s = Student()
    s.name = 'Michael'                  # 动态给实例绑定一个属性
    def set_age(self, age):             # 定义一个函数作为实例方法
        self.age = age
    from types import MethodType
    s.set_age = MethodType(set_age, s)  # 给实例绑定一个方法 类的其他实例不受此影响
    s.set_age(25)                       # 调用实例方法
    Student.set_age = MethodType(set_age, Student)    # 为类绑定一个方法 类的所有实例都拥有该方法
    
    1. 多重继承: "混合类", 搜索方式"从下到上 从左到右 广度优先"
    class A(B, C):
        pass
    
    1. 类的继承和子类的初始化
    # 1.子类定义了__init__方法时,若未显示调用基类__init__方法,python不会帮你调用。
    # 2.子类未定义__init__方法时,python会自动帮你调用首个基类的__init__方法,注意是首个。
    # 3.子类显示调用基类的初始化函数:
    class FooParent(object):
        def __init__(self, a):
            self.parent = 'I\'m the Parent.'
            print('Parent:a=' + str(a))
        def bar(self, message):
            print(message + ' from Parent')
    class FooChild(FooParent):
        def __init__(self, a):
            FooParent.__init__(self, a)
            print('Child:a=' + str(a))
        def bar(self, message):
            FooParent.bar(self, message)
            print(message + ' from Child')
    fooChild = FooChild(10)
    fooChild.bar('HelloWorld')
    
    1. 实例方法 / 静态方法 / 类方法
    class Methods(object):
        def imeth(self, x): print(self, x)      # 实例方法:传入的是实例和数据,操作的是实例的属性
        def smeth(x): print(x)                  # 静态方法:只传入数据 不传入实例,操作的是类的属性而不是实例的属性
        def cmeth(cls, x): print(cls, x)        # 类方法:传入的是类对象和数据
        smeth = staticmethod(smeth)             # 调用内置函数,也可以使用@staticmethod
        cmeth = classmethod(cmeth)              # 调用内置函数,也可以使用@classmethod
    obj = Methods()
    obj.imeth(1)                                # 实例方法调用 <__main__.Methods object...> 1
    Methods.imeth(obj, 2)                       # <__main__.Methods object...> 2
    Methods.smeth(3)                            # 静态方法调用 3
    obj.smeth(4)                                # 这里可以使用实例进行调用
    Methods.cmeth(5)                            # 类方法调用 <class '__main__.Methods'> 5
    obj.cmeth(6)                                # <class '__main__.Methods'> 6
    
    1. 函数装饰器:是它后边的函数的运行时的声明 由@符号以及后边紧跟的"元函数"(metafunction)组成
    @staticmethod
        def smeth(x): print(x)
    # 等同于:
        def smeth(x): print(x)
        smeth = staticmethod(smeth)
    # 同理
        @classmethod
        def cmeth(cls, x): print(x)
    # 等同于
        def cmeth(cls, x): print(x)
        cmeth = classmethod(cmeth)
    
    1. 类修饰器:是它后边的类的运行时的声明 由@符号以及后边紧跟的"元函数"(metafunction)组成
        def decorator(aClass):.....
        @decorator
        class C(object):....
    # 等同于:
        class C(object):....
        C = decorator(C)
    
    1. 限制class属性: slots属性
    class Student(object):
        __slots__ = ('name', 'age')             # 限制Student及其实例只能拥有name和age属性
    # __slots__属性只对当前类起作用, 对其子类不起作用
    # __slots__属性能够节省内存
    # __slots__属性可以为列表list,或者元组tuple
    
    1. 类属性高级话题: @property
    # 假设定义了一个类:C,该类必须继承自object类,有一私有变量_x
    class C(object):
        def __init__(self):
            self.__x = None
    # 第一种使用属性的方法
        def getx(self):
            return self.__x
        def setx(self, value):
            self.__x = value
        def delx(self):
            del self.__x
        x = property(getx, setx, delx, '')
    # property函数原型为property(fget=None,fset=None,fdel=None,doc=None)
    # 使用
    c = C()
    c.x = 100                         # 自动调用setx方法
    y = c.x                           # 自动调用getx方法
    del c.x                           # 自动调用delx方法
    # 第二种方法使用属性的方法
        @property
        def x(self):
            return self.__x
        @x.setter
        def x(self, value):
           self.__x = value
        @x.deleter
        def x(self):
           del self.__x
    # 使用
    c = C()
    c.x = 100                         # 自动调用setter方法
    y = c.x                           # 自动调用x方法
    del c.x                           # 自动调用deleter方法
    
    1. 定制类: 重写类的方法
    # (1)__str__方法、__repr__方法: 定制类的输出字符串
    # (2)__iter__方法、next方法: 定制类的可迭代性
    class Fib(object):
        def __init__(self):
            self.a, self.b = 0, 1     # 初始化两个计数器a,b
        def __iter__(self):
            return self               # 实例本身就是迭代对象,故返回自己
        def next(self):
            self.a, self.b = self.b, self.a + self.b
            if self.a > 100000:       # 退出循环的条件
                raise StopIteration()
            return self.a             # 返回下一个值
    for n in Fib():
        print(n)                      # 使用
    # (3)__getitem__方法、__setitem__方法: 定制类的下标操作[] 或者切片操作slice
    class Indexer(object):
        def __init__(self):
            self.data = {}
        def __getitem__(self, n):             # 定义getitem方法
            print('getitem:', n)                
            return self.data[n]
        def __setitem__(self, key, value):    # 定义setitem方法
            print('setitem:key = {0}, value = {1}'.format(key, value))
            self.data[key] = value
    test = Indexer()
    test[0] = 1;   test[3] = '3'              # 调用setitem方法
    print(test[0])                            # 调用getitem方法
    # (4)__getattr__方法: 定制类的属性操作
    class Student(object):
        def __getattr__(self, attr):          # 定义当获取类的属性时的返回值
            if attr=='age':
                return 25                     # 当获取age属性时返回25
        raise AttributeError('object has no attribute: %s' % attr)
        # 注意: 只有当属性不存在时 才会调用该方法 且该方法默认返回None 需要在函数最后引发异常
    s = Student()
    s.age                                     # s中age属性不存在 故调用__getattr__方法 返回25
    # (5)__call__方法: 定制类的'可调用'性
    class Student(object):
        def __call__(self):                   # 也可以带参数
            print('Calling......')
    s = Student()
    s()                                       # s变成了可调用的 也可以带参数
    callable(s)                               # 测试s的可调用性 返回True
    #    (6)__len__方法:求类的长度
    def __len__(self):
        return len(self.data)
    
    1. 动态创建类type()
    # 一般创建类 需要在代码中提前定义
        class Hello(object):
            def hello(self, name='world'):
                print('Hello, %s.' % name)
        h = Hello()
        h.hello()                             # Hello, world
        type(Hello)                           # Hello是一个type类型 返回<class 'type'>
        type(h)                               # h是一个Hello类型 返回<class 'Hello'>
    # 动态类型语言中 类可以动态创建 type函数可用于创建新类型
        def fn(self, name='world'):           # 先定义函数
            print('Hello, %s.' % name)
        Hello = type('Hello', (object,), dict(hello=fn))    # 创建Hello类 type原型: type(name, bases, dict)
        h = Hello()                           # 此时的h和上边的h一致
    
    1. 捕获异常
    try:
        except:                               # 捕获所有的异常 等同于except Exception:
        except name:                          # 捕获指定的异常
        except name, value:                   # 捕获指定的异常和额外的数据(实例)
        except (name1, name2):
        except (name1, name2), value:
        except name4 as X:
        else:                                 # 如果没有发生异常
        finally:                              # 总会执行的部分
    # 引发异常: raise子句(raise IndexError)
        raise <instance>                      # raise instance of a class, raise IndexError()
        raise <class>                         # make and raise instance of a class, raise IndexError
        raise                                 # reraise the most recent exception
    
    1. Python3.x中的异常链: raise exception from otherException
    except Exception as X:
        raise IndexError('Bad') from X
    
    1. assert子句: assert <test>, <data>
    assert x < 0, 'x must be negative'
    
    1. with/as环境管理器:作为常见的try/finally用法模式的替代方案
    with expression [as variable], expression [as variable]:
    # 例子:
        with open('test.txt') as myfile:
            for line in myfile: print(line)
    # 等同于:
        myfile = open('test.txt')
        try:
            for line in myfile: print(line)
        finally:
            myfile.close()
    
    1. 用户自定义异常: class Bad(Exception):.....
    """
    Exception超类 / except基类即可捕获到其所有子类
    Exception超类有默认的打印消息和状态 当然也可以定制打印显示:
    """
    class MyBadError(Exception):
        def __str__(self):
            return '定制的打印消息'
    try:
        MyBadError()
    except MyBad as x:
        print(x)
    
    1. 用户定制异常数据
    class FormatError(Exception):
        def __init__(self, line ,file):
            self.line = line
            self.file = file
    try:
        raise FormatError(42, 'test.py')
    except FormatError as X:
        print('Error at ', X.file, X.line)
    # 用户定制异常行为(方法):以记录日志为例
    class FormatError(Exception):
        logfile = 'formaterror.txt'
        def __init__(self, line ,file):
            self.line = line
            self.file = file
        def logger(self):
            open(self.logfile, 'a').write('Error at ', self.file, self.line)
    try:
        raise FormatError(42, 'test.py')
    except FormatError as X:
        X.logger()
    
    1. 关于sys.exc_info:允许一个异常处理器获取对最近引发的异常的访问
    try:
        ......
    except:
        # 此时sys.exc_info()返回一个元组(type, value, traceback)
        # type:正在处理的异常的异常类型
        # value:引发的异常的实例
        # traceback:堆栈信息
    
    1. 异常层次
    BaseException
    +-- SystemExit
    +-- KeyboardInterrupt
    +-- GeneratorExit
    +-- Exception
        +-- StopIteration
        +-- ArithmeticError
        +-- AssertionError
        +-- AttributeError
        +-- BufferError
        +-- EOFError
        +-- ImportError
        +-- LookupError
        +-- MemoryError
        +-- NameError
        +-- OSError
        +-- ReferenceError
        +-- RuntimeError
        +-- SyntaxError
        +-- SystemError
        +-- TypeError
        +-- ValueError
        +-- Warning
    

    相关文章

      网友评论

          本文标题:P综合问题

          本文链接:https://www.haomeiwen.com/subject/nfcdeqtx.html